25 datasets found
  1. h

    mini-imagenet

    • huggingface.co
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PyTorch Image Models (2024). mini-imagenet [Dataset]. https://huggingface.co/datasets/timm/mini-imagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    PyTorch Image Models
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Description

    A mini version of ImageNet-1k with 100 of 1000 classes present. Unlike some 'mini' variants this one includes the original images at their original sizes. Many such subsets downsample to 84x84 or other smaller resolutions.

      Data Splits
    
    
    
    
    
      Train
    

    50000 samples from ImageNet-1k train split

      Validation
    

    10000 samples from ImageNet-1k train split

      Test
    

    5000 samples from ImageNet-1k validation split (all 50 samples per class)… See the full description on the dataset page: https://huggingface.co/datasets/timm/mini-imagenet.

  2. h

    mini-imagenet

    • huggingface.co
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dickson Neoh (2024). mini-imagenet [Dataset]. https://huggingface.co/datasets/dnth/mini-imagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 20, 2024
    Authors
    Dickson Neoh
    Description

    dnth/mini-imagenet dataset hosted on Hugging Face and contributed by the HF Datasets community

  3. miniImageNet

    • kaggle.com
    Updated Dec 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Leo (2021). miniImageNet [Dataset]. https://www.kaggle.com/datasets/ly9802/miniimagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Steven Leo
    Description

    Dataset

    This dataset was created by Steven Leo

    Released under Data files Β© Original Authors

    Contents

  4. t

    miniImagenet and tieredImageNet

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). miniImagenet and tieredImageNet [Dataset]. https://service.tib.eu/ldmservice/dataset/miniimagenet-and-tieredimagenet
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The miniImagenet and tieredImageNet datasets are used for few-shot classification experiments.

  5. t

    Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele (2024). Dataset:...

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele (2024). Dataset: mini-ImageNet. https://doi.org/10.57702/iixwjgrs [Dataset]. https://service.tib.eu/ldmservice/dataset/mini-imagenet
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The mini-ImageNet dataset is a subset of the ImageNet dataset, containing 60,000 images from 100 classes.

  6. miniImageNet

    • kaggle.com
    zip
    Updated Jun 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arjun Ashok (2021). miniImageNet [Dataset]. https://www.kaggle.com/arjun2000ashok/miniimagenet
    Explore at:
    zip(151826514 bytes)Available download formats
    Dataset updated
    Jun 27, 2021
    Authors
    Arjun Ashok
    Description

    Dataset

    This dataset was created by Arjun Ashok

    Contents

    It contains the following files:

  7. MiniImageNet pickle files for learn2learn library

    • zenodo.org
    bin
    Updated May 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Yu; Patrick Yu (2023). MiniImageNet pickle files for learn2learn library [Dataset]. http://doi.org/10.5281/zenodo.7882360
    Explore at:
    binAvailable download formats
    Dataset updated
    May 1, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Patrick Yu; Patrick Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MiniImageNet pickle files for learn2learn library - please move these files to ~/data/l2l_data (or whereever your l2l_data directory is) in order for MAML and USL experiments to properly run and recognize MiniImageNet.

  8. O

    Mini-ImageNet

    • opendatalab.com
    zip
    Updated Jan 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2024). Mini-ImageNet [Dataset]. https://opendatalab.com/OpenDataLab/Mini-ImageNet
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 8, 2024
    Dataset provided by
    Google
    License

    https://lyy.mpi-inf.mpg.de/mtl/download/https://lyy.mpi-inf.mpg.de/mtl/download/

    Description

    The mini-ImageNet dataset was proposed by Vinyals et al. for few-shot learning evaluation. Its complexity is high due to the use of ImageNet images but requires fewer resources and infrastructure than running on the full ImageNet dataset. In total, there are 100 classes with 600 samples of 84Γ—84 color images per class. These 100 classes are divided into 64, 16, and 20 classes respectively for sampling tasks for meta-training, meta-validation, and meta-test.

  9. t

    Mini-imagenet dataset - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Mini-imagenet dataset - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/mini-imagenet-dataset
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The dataset used in the paper is a mini-imagenet dataset, with 10100 instances, 21168 attributes, and 100 categories. The dataset is used for clustering and evaluation of the proposed method.

  10. h

    mini-imagenet-clip-embeddings

    • huggingface.co
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yoni Gottesman (2025). mini-imagenet-clip-embeddings [Dataset]. https://huggingface.co/datasets/yonigo/mini-imagenet-clip-embeddings
    Explore at:
    Dataset updated
    Jul 15, 2025
    Authors
    Yoni Gottesman
    Description

    yonigo/mini-imagenet-clip-embeddings dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. Average test set classification accuracy on miniimageNet.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Zhang; Min Fang; Nian Wang (2023). Average test set classification accuracy on miniimageNet. [Dataset]. http://doi.org/10.1371/journal.pone.0225426.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yan Zhang; Min Fang; Nian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Average test set classification accuracy on miniimageNet.

  12. t

    miniImageNet, tieredImageNet, Caltech-USCD birds-200-2011

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). miniImageNet, tieredImageNet, Caltech-USCD birds-200-2011 [Dataset]. https://service.tib.eu/ldmservice/dataset/miniimagenet--tieredimagenet--caltech-uscd-birds-200-2011
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    miniImageNet, tieredImageNet, Caltech-USCD birds-200-2011

  13. h

    mini_imagenet

    • huggingface.co
    Updated Jun 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GATE (2023). mini_imagenet [Dataset]. https://huggingface.co/datasets/GATE-engine/mini_imagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 25, 2023
    Dataset authored and provided by
    GATE
    Description

    Dataset Card for "mini_imagenet"

    More Information needed

  14. mini-imagenet(format: pkl)

    • kaggle.com
    Updated Nov 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hylan-J (2024). mini-imagenet(format: pkl) [Dataset]. https://www.kaggle.com/datasets/hylanj/mini-imagenetformat-pkl/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 24, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hylan-J
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Hylan-J

    Released under MIT

    Contents

  15. T

    controlled_noisy_web_labels

    • tensorflow.org
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). controlled_noisy_web_labels [Dataset]. https://www.tensorflow.org/datasets/catalog/controlled_noisy_web_labels
    Explore at:
    Dataset updated
    Dec 6, 2022
    Description

    Controlled Noisy Web Labels is a collection of ~212,000 URLs to images in which every image is carefully annotated by 3-5 labeling professionals by Google Cloud Data Labeling Service. Using these annotations, it establishes the first benchmark of controlled real-world label noise from the web.

    We provide the Red Mini-ImageNet (real-world web noise) and Blue Mini-ImageNet configs: - controlled_noisy_web_labels/mini_imagenet_red - controlled_noisy_web_labels/mini_imagenet_blue

    Each config contains ten variants with ten noise-levels p from 0% to 80%. The validation set has clean labels and is shared across all noisy training sets. Therefore, each config has the following splits:

    • train_00
    • train_05
    • train_10
    • train_15
    • train_20
    • train_30
    • train_40
    • train_50
    • train_60
    • train_80
    • validation

    The details for dataset construction and analysis can be found in the paper. All images are resized to 84x84 resolution.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('controlled_noisy_web_labels', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/controlled_noisy_web_labels-mini_imagenet_red-1.0.0.png" alt="Visualization" width="500px">

  16. t

    Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, Fei Sha (2024). Dataset:...

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, Fei Sha (2024). Dataset: MiniImageNet, Caltech-UCSD Birds 200-2011, TieredImageNet, OfficeHome. https://doi.org/10.57702/nfimqsjl [Dataset]. https://service.tib.eu/ldmservice/dataset/miniimagenet--caltech-ucsd-birds-200-2011--tieredimagenet--officehome
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    MiniImageNet, Caltech-UCSD Birds 200-2011, TieredImageNet, OfficeHome

  17. t

    Han-Jia Ye, Da-Wei Zhou, Lanqing Hong, Zhenguo Li, Xiu-Shen Wei, De-Chuan...

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Han-Jia Ye, Da-Wei Zhou, Lanqing Hong, Zhenguo Li, Xiu-Shen Wei, De-Chuan Zhan (2024). Dataset: MiniImageNet, TieredImageNet, and CUB. https://doi.org/10.57702/ozt729oo [Dataset]. https://service.tib.eu/ldmservice/dataset/miniimagenet--tieredimagenet--and-cub
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    MiniImageNet, TieredImageNet, and CUB are used for few-shot learning tasks.

  18. mini image net vitb16 features

    • kaggle.com
    Updated Oct 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dotran0101 (2023). mini image net vitb16 features [Dataset]. https://www.kaggle.com/dotran0101/mini-image-net-vitb16-features/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 13, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    dotran0101
    Description

    Dataset

    This dataset was created by dotran0101

    Contents

  19. N

    Replication Data for: Few-Shot and Continual Learning with Attentive...

    • dataverse.lib.nycu.edu.tw
    bin, gif, png, sh +4
    Updated Jun 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NYCU Dataverse (2022). Replication Data for: Few-Shot and Continual Learning with Attentive Independent Mechanisms [Dataset]. http://doi.org/10.57770/A17ZGB
    Explore at:
    text/plain; charset=us-ascii(1067), gif(330235), sh(459), text/markdown(1139), png(39406), txt(32), text/x-python(30), bin(1259)Available download formats
    Dataset updated
    Jun 16, 2022
    Dataset provided by
    NYCU Dataverse
    License

    https://dataverse.lib.nycu.edu.tw/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.57770/A17ZGBhttps://dataverse.lib.nycu.edu.tw/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.57770/A17ZGB

    Description

    Deep neural networks (DNNs) are known to perform well when deployed to test distributions that shares high similarity with the training distribution. Feeding DNNs with new data sequentially that were unseen in the training distribution has two major challenges β€” fast adaptation to new tasks and catastrophic forgetting of old tasks. Such difficulties paved way for the on-going research on few-shot learning and continual learning. To tackle these problems, we introduce Attentive Independent Mechanisms (AIM). We incorporate the idea of learning using fast and slow weights in conjunction with the decoupling of the feature extraction and higher-order conceptual learning of a DNN. AIM is designed for higher-order conceptual learning, modeled by a mixture of experts that compete to learn independent concepts to solve a new task. AIM is a modular component that can be inserted into existing deep learning frameworks. We demonstrate its capability for few-shot learning by adding it to SIB and trained on MiniImageNet and CIFAR-FS, showing significant improvement. AIM is also applied to ANML and OML trained on Omniglot, CIFAR-100 and MiniImageNet to demonstrate its capability in continual learning.

  20. Average test set classification accuracy on Omniglot.

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Zhang; Min Fang; Nian Wang (2023). Average test set classification accuracy on Omniglot. [Dataset]. http://doi.org/10.1371/journal.pone.0225426.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yan Zhang; Min Fang; Nian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Average test set classification accuracy on Omniglot.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
PyTorch Image Models (2024). mini-imagenet [Dataset]. https://huggingface.co/datasets/timm/mini-imagenet

mini-imagenet

Mini-ImageNet

timm/mini-imagenet

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 6, 2024
Dataset authored and provided by
PyTorch Image Models
License

https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

Description

Dataset Description

A mini version of ImageNet-1k with 100 of 1000 classes present. Unlike some 'mini' variants this one includes the original images at their original sizes. Many such subsets downsample to 84x84 or other smaller resolutions.

  Data Splits





  Train

50000 samples from ImageNet-1k train split

  Validation

10000 samples from ImageNet-1k train split

  Test

5000 samples from ImageNet-1k validation split (all 50 samples per class)… See the full description on the dataset page: https://huggingface.co/datasets/timm/mini-imagenet.

Search
Clear search
Close search
Google apps
Main menu