Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.
This dataset includes high quality (800 Dots Per Inch - DPI), 24 bit color images of Minnesota's original Public Land Survey (PLS) plats created during the first government land survey of the state from 1848 to 1907. Currently housed at the Office of the Secretary of State, these plats were created by the U.S. Surveyor General's Office. This collection of more than 3,600 maps also includes later General Land Office (GLO) and the Bureau of Land Management (BLM) maps - up to the year 2001.
Minnesota's survey plat maps serve as the fundamental legal records for real estate in the state; all property titles and descriptions stem from them. They also serve as an essential resource for surveyors and as an analytical tool for the state's physical geography prior to European settlement. Finally, they serve as a testimony to years and years of hard work by the surveying community, often under challenging conditions.
In recent years the deteriorating physical condition of the older maps and the needs of technologically more sophisticated researchers, who require access to the maps, have made handling the original paper records increasingly less practical. To meet this challenge, the Office of the Secretary of State, the State Archives of the Minnesota Historical Society, the Minnesota Department of Transportation, MnGeo (formerly the Land Management Information Center - LMIC) and the Minnesota Association of County Surveyors collaborated in a digitization project which produced images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes worth of data. Funding was provided by the Minnesota Department of Transportation.
This map shows the free and open data status of county public geospatial (GIS) data across Minnesota. The accompanying data set can be used to make similar maps using GIS software.
Counties shown in this dataset as having free and open public geospatial data (with or without a policy) are: Aitkin, Anoka, Becker, Beltrami, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Grant, Hennepin, Hubbard, Isanti, Itasca, Kittson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Meeker, Mille Lacs, Morrison, Mower, Norman, Olmsted, Otter Tail, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Scott, Sherburne, Stearns, Steele, Stevens, St. Louis, Traverse, Waseca, Washington, Wilkin, Winona, Wright and Yellow Medicine.
To see if a county's data is distributed via the Minnesota Geospatial Commons, check the Commons organizations page: https://gisdata.mn.gov/organization
To see if a county distributes data via its website, check the link(s) on the Minnesota County GIS Contacts webpage: https://www.mngeo.state.mn.us/county_contacts.html
This data set features polygons that represent tax parcels in Aitkin County, Minnesota. Polygons are identified by Parcel Identification Number (PIN). Polygons were mapped using the legal description on file in the Recorder's Office. Redundant geometries exist for condomimiums and undivided interests. Undivided ownership occurs when two or more parties have an ownership interest in the same parcel.
This dataset contains polygons representing individual taxed parcels or individual tax-exempt parcels tracked for taxing purposes. It also contains polygons representing the locations of multiple tax properties. In the case of multiple tax properties, several parcel polygons may be stacked on top of one another. These are multiple tax parcels that cannot be delineated on a two-dimensional map, including both taxed and tax-exempt parcels. The parcels are represented with identical geometries but have different parcel IDs and associated tax attributes. The PID field contains the property ID number for each parcel.Link to Attribute Table Information: http://gis.hennepin.us/OpenData/Metadata/County%20Tax%20Parcels.pdf
© This dataset is compiled monthly by the Hennepin County GIS Office from parcel geometry that is created and maintained by the Hennepin County Resident and Real Estate Services Survey Division and tax attributes extracted from the Hennepin County Real Estate Services property tax information system.
Washington County, MN Tax Parcels. An independent manual check of the parcel data was made at the time of its initial development whereby all geo-coded parcel legal descriptions in a PLSS section were reinterpreted and examined for accuracy and completeness on the hard copy check plot. As each new plat or lot division occurs, a similar process is repeated for the new additions during the maintenance period. Multiple lines of ownership indicating ambiguity in property line location are merged into a single line if falling within 3 feet of each other. Gaps or overlaps in these situations are not shown. In some cases where two lines converge; e.g., where at one end the two lot lines are within 0.50 feet of each other and at the other end they are within 6.00 feet of each other they may be merged because the average discrepancy is 3 feet or less. Where gaps or overlaps exist in excess of approximately 3 feet in width, they are shown with text notation indicating APPARENT GAP or AREA OF DISCREPANCY.
DCGIS is an interactive map that provides increased functionality for advanced users as well as access to about 150 layers of GIS data, including parcel information, contour lines, aerial photography, county park amenities, park trails, bikeways, county road construction, roundabouts, floodplains and more. It allows you to create a map at any scale you wish.
The Interactive GIS Map is intended for use on any device - mobile or desktop - with high speed access.
The TRSQ digital data set represents the Township, Range, Section, Quarter section, and Quarter-quarter section divisions of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns. The quarter-quarter section remains an important subdivision for rural Minnesota since these lines are used to define local boundaries, roads, and service areas. All survey lines were extended across water bodies despite the fact that U.S. Geological Survey (USGS) base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas ensuring that township and range location can be determined for any point in the state. It also means that the data is not affected if lake levels change over time. The township, range and section boundaries were digitized at MnGeo (formerly the Land Management Information Center - LMIC) from the USGS 30' x 60' map series (1:100,000-scale). Quarter section and quarter-quarter section subdivisions were calculated using the section lines. They were not digitized from original plat book survey lines or from the meandered lines that surveyors laid out around water bodies. The existence of government lots within a quarter-quarter section is recorded in the data set; however, the government lot boundaries were not digitized. If a quarter-quarter section contains more than one government lot, the number of lots is recorded -- see Lineage, Section 2, for more detail. Note: For most uses, TRSQ has been superseded by the Minnesota Department of Natural Resources (DNR) 1:24,000-scale 'Control Point Generated PLS' data set which is free online. See https://gisdata.mn.gov/dataset/plan-mndnr-public-land-survey for more information. Also, many county surveyors offices have more accurate PLS (Public Land Survey) data sets. For county webpages and contact information, see http://www.mngeo.state.mn.us/cty_contacts.html .
Vector polygon map data of property parcels from Itasca County, Minnesota containing 77967 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Points provids the location of Railroad Station Plats. Data contains information about the railroad ownership, roll numbers, sheet numbers and file names of the images.
About this itemThanks for your interest in our public access GIS hub site. This site brings many of our most popular mapping resources together in one place for easy access. Users can quickly find the content they need and discover other areas of interest by exploring a series of Map Galleries. For those seeking GIS data, an open data portal with a growing collection of local datasets is just a click or tap away. Author/ContributorKyle ObergOrganizationCook CountyOrg Websiteco.cook.mn.us
This is the authoritative public subset of the compiled Minnesota statewide parcel dataset. By authoritative, we mean this is the official source of statewide parcel data compiled from the counties that have opted-in to be included. Counties are the authoritative source and owner of parcel data. Quarterly, MnGeo compiles and standardizes the county data using the Minnesota Geospatial Advisory Council's parcel data standard. In the compilation process, some data content is standardized or otherwise modified (capitalization and address parsing are the most common changes). The full opt-in compiled parcel metadata record can be found on the Minnesota Geospatial Commons.To obtain the most current and authoritative data in its original form, users are referred back to the respective county. Links to each county's downloadable and/or web-viewable data, where known, are available in the accompanying spatial metadata dataset.Known limitations:Data provided by counties are often limited to a subset of fields and may not be the same fields across all counties. The fields provided by a given county may change by quarter.The USECLASS and XUSECLASS fields, while often consistent within a county, are not standardized between counties.The OWN_ADDR_# and TAX_ADDR_# fields are often populated in ways not consistent with the standard. In particular, an address number/street address may not be in Line 1, and city/state/zip cannot be relied on to be in Line 3. Even within a single county, the city/state/zip line may not be in a consistent field.Parcels with addresses on fractional streets (5-1/2th Ave) cause issues for our address parser when parsing is needed for aggregation and may be missing some or all of the address data. Certain other oddly named streets can also cause this behavior.A maximum record count has been set on the mapping service. This limits the number of features that can be returned in a single request. It is set to balance usability and response time.
The Digital Bedrock Geologic-GIS Map of Voyageurs National Park and Vicinity, Minnesota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (voya_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (voya_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (voya_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (voya_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (voya_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (voya_bedrock_geology_metadata_faq.pdf). Please read the voya_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Minnesota Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (voya_bedrock_geology_metadata.txt or voya_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Data Frame layers that incude the data and interpretations for the data-base plate of St. Louis County and went into the publication of the St. Louis County Geologic Atlas, Part A.
The Digital Geologic-GIS Map of Pipestone National Monument, Minnesota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (pipe_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (pipe_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (pipe_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (pipe_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (pipe_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (pipe_geology_metadata_faq.pdf). Please read the pipe_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://res1wwwd-o-tgoogled-o-tcom.vcapture.xyz/earth/versions/. QGIS software is available for free at: https://res1wwwd-o-tqgisd-o-torg.vcapture.xyz/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://res1wwwd-o-tnpsd-o-tgov.vcapture.xyz/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://res1wwwd-o-tnpsd-o-tgov.vcapture.xyz/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Park Service, Midwest Region. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (pipe_geology_metadata.txt or pipe_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:12,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://res1wwwd-o-tnpsd-o-tgov.vcapture.xyz/articles/gri-geodatabase-model.htm).
Easy to navigate and search for property information. Features a large map area and a printable property card. It also includes additional map features such as streets, lakes and parks.
The Right of Way Map Footprint is a GIS data set created to represent the outer footprint or extent of a right of way map (including footprints for both Vector (CAD) and Raster Images). The purpose is to aid the user in more rapidly identifying the desired map for a specific area of interest relative to other maps, roads, landmarks, etc. This data set is developed and maintained on a statewide basis. It does not include geo-referenced representations of right of way maps themselves.
description: The Soil Atlas project provides a consistent, statewide map series and GIS data set describing soil and landscape characteristics. The data is generalized. The scale of 1:250,000, or about 1/4 inch to 1 mile, makes it possible to show areas as small as 1 square mile. The data set and maps were created in the 1970's to provide information to support generalized planning over broad areas. The maps were not intended to replace the detailed soil surveys, but to provide a more general overview, and to provide make soil description information available until such a time as soil surveys were completed statewide. The Soil Atlas map series was developed by the Department of Soil, Water, and Climate of the University of Minnesota, in cooperation with the Natural Resources Conservation Service (previously Soil Conservation Service), U.S. Department of Agriculture, and the Minnesota Geological Survey. Two main descriptors of soils are groupings of Soil Landscape Units based on a number of factors (soil texture of the rooting zone, soil texture below the rooting zone, drainage, and color), and delineations of Geomorphic Regions, which illustrate broad physiographic features and provide some characterization of the parent materials of the soils. Further soils characterizations are derived from these primary categories. Printed maps were converted to EPPL raster GIS format via grid-cell coding by the Minnesota Land Management Information System at the University of Minnesota (now the Land Management Information Center).; abstract: The Soil Atlas project provides a consistent, statewide map series and GIS data set describing soil and landscape characteristics. The data is generalized. The scale of 1:250,000, or about 1/4 inch to 1 mile, makes it possible to show areas as small as 1 square mile. The data set and maps were created in the 1970's to provide information to support generalized planning over broad areas. The maps were not intended to replace the detailed soil surveys, but to provide a more general overview, and to provide make soil description information available until such a time as soil surveys were completed statewide. The Soil Atlas map series was developed by the Department of Soil, Water, and Climate of the University of Minnesota, in cooperation with the Natural Resources Conservation Service (previously Soil Conservation Service), U.S. Department of Agriculture, and the Minnesota Geological Survey. Two main descriptors of soils are groupings of Soil Landscape Units based on a number of factors (soil texture of the rooting zone, soil texture below the rooting zone, drainage, and color), and delineations of Geomorphic Regions, which illustrate broad physiographic features and provide some characterization of the parent materials of the soils. Further soils characterizations are derived from these primary categories. Printed maps were converted to EPPL raster GIS format via grid-cell coding by the Minnesota Land Management Information System at the University of Minnesota (now the Land Management Information Center).
This dataset is a compilation of county parcel data from Minnesota counties that have opted-in for their parcel data to be included in this dataset.
It includes the following 55 counties that have opted-in as of the publication date of this dataset: Aitkin, Anoka, Becker, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Fillmore, Grant, Hennepin, Houston, Isanti, Itasca, Jackson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Mille Lacs, Morrison, Mower, Murray, Norman, Olmsted, Otter Tail, Pennington, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Saint Louis, Scott, Sherburne, Stearns, Stevens, Traverse, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.
If you represent a county not included in this dataset and would like to opt-in, please contact Heather Albrecht (Heather.Albrecht@hennepin.us), co-chair of the Minnesota Geospatial Advisory Council (GAC)’s Parcels and Land Records Committee's Open Data Subcommittee. County parcel data does not need to be in the GAC parcel data standard to be included. MnGeo will map the county fields to the GAC standard.
County parcel data records have been assembled into a single dataset with a common coordinate system (UTM Zone 15) and common attribute schema. The county parcel data attributes have been mapped to the GAC parcel data standard for Minnesota: https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html
This compiled parcel dataset was created using Python code developed by Minnesota state agency GIS professionals, and represents a best effort to map individual county source file attributes into the common attribute schema of the GAC parcel data standard. The attributes from counties are mapped to the most appropriate destination column. In some cases, the county source files included attributes that were not mapped to the GAC standard. Additionally, some county attribute fields were parsed and mapped to multiple GAC standard fields, such as a single line address. Each quarter, MnGeo provides a text file to counties that shows how county fields are mapped to the GAC standard. Additionally, this text file shows the fields that are not mapped to the standard and those that are parsed. If a county shares changes to how their data should be mapped, MnGeo updates the compilation. If you represent a county and would like to update how MnGeo is mapping your county attribute fields to this compiled dataset, please contact us.
This dataset is a snapshot of parcel data, and the source date of the county data may vary. Users should consult County websites to see the most up-to-date and complete parcel data.
There have been recent changes in date/time fields, and their processing, introduced by our software vendor. In some cases, this has resulted in date fields being empty. We are aware of the issue and are working to correct it for future parcel data releases.
The State of Minnesota makes no representation or warranties, express or implied, with respect to the use or reuse of data provided herewith, regardless of its format or the means of its transmission. THE DATA IS PROVIDED “AS IS” WITH NO GUARANTEE OR REPRESENTATION ABOUT THE ACCURACY, CURRENCY, SUITABILITY, PERFORMANCE, MECHANTABILITY, RELIABILITY OR FITINESS OF THIS DATA FOR ANY PARTICULAR PURPOSE. This dataset is NOT suitable for accurate boundary determination. Contact a licensed land surveyor if you have questions about boundary determinations.
DOWNLOAD NOTES: This dataset is only provided in Esri File Geodatabase and OGC GeoPackage formats. A shapefile is not available because the size of the dataset exceeds the limit for that format. The distribution version of the fgdb is compressed to help reduce the data footprint. QGIS users should consider using the Geopackage format for better results.
Four digital water-surface profile maps for a 14-mile reach of the Mississippi River near Prairie Island in Welch, Minnesota from the confluence of the St. Croix River at Prescott, Wisconsin to upstream of the United States Army Corps of Engineers (USACE) Lock and Dam No. 3 in Welch, Minnesota, were created by the U.S. Geological Survey (USGS) in cooperation with the Prairie Island Indian Community. The water-surface profile maps depict estimates of the areal extent and depth of inundation corresponding to selected water levels (stages) at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). Current conditions for estimating near-real-time areas of water inundation by use of USGS streamgage information may be obtained on the internet at http://waterdata.usgs.gov/. Water-surface profiles were computed for the stream reach using HEC-GeoRAS software by means of a one-dimensional step-backwater HEC-RAS hydraulic model using the steady-state flow computation option. The hydraulic model used in this study was previously created by the USACE . The original hydraulic model previously created extended beyond the 14-mile reach used in this study. After obtaining the hydraulic model from USACE, the HEC-RAS model was calibrated by using the most current stage-discharge relations at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). The hydraulic model was then used to determine four water-surface profiles for flood stages referenced to 37.00, 39.00, 40.00, and 41.00-feet of stage at the USGS streamgage on the Mississippi River at Prescott, Wisconsin (USGS station number 05344500). The simulated water-surface profiles were then combined with a digital elevation model (DEM, derived from light detection and ranging (LiDAR) in Geographic Information System (GIS) data having a 0.35-foot vertical and 1.97-foot root mean square error horizontal resolution) in order to delineate the area inundated at each stage. The calibrated hydraulic model used to produce digital water-surface profile maps near Prairie Island, as part of the associated report, is documented in the U.S. Geological Survey Scientific Investigations Report 2021-5018 (https://doi.org/10.3133/ sir20215018). The data provided in this data release contains three zip files: 1) MissRiverPI_DepthGrids.zip, 2) MissRiverPI_InundationLayers.zip, and 3) ModelArchive.zip. The MissRiverPI_DepthGrids.zip and MissRiverPI_InundationLayers.zip files contain model output water-surface profile maps as shapefiles (.shp) and Keyhole Markup Language files (.kmz) that can be opened using Esri GIS systems (.shp files) or Google Earth (.kmz files), while the ModelArchive.zip contains model inputs, outputs, and calibration data used in creating the water-surface profiles maps.
Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.