10 foot topography map of Scott County, Minnesota.
Map Catalog is powered by the Memento Server software and provides a continuous view across multiple geospatial PDFs. The PDF maps currently available are 1K USNG (topo and aerial) maps from four metro counties(Anoka, Carver, Dakota and Ramsey), 1K USNG Topo of cities and state parks in Minnesota, 10K USNG Aerial maps for Minnesota, US Topo for the metro and Dakota County Park maps, City Street maps and Half Section maps. Map update frequency varies.
NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.
This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu
Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.
Maps are best when viewed with RED/CYAN anaglyph glasses!
A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.
World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.
Continental United States: 3-D grayscale map of the Lower 48.
Western United States: 3-D grayscale map of the Western United States with state boundaries.
Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.
Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.
Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.
Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.
Minneapolis, MN: 3-D topographical map of South Minneapolis.
Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.
North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.
St. Paul, MN: 3-D topographical map of St. Paul.
Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.
Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.
Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.
Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.
Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.
Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.
Blaine, MN: 3-D map of Blaine and the Mississippi River.
White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.
Maple Grove, MN: 3-D topographical mmap of the NW suburbs of the Twin Cities.
Version 10.0 of these data are part of a larger U.S. Geological Survey (USGS) project to develop an updated geospatial database of mines, mineral deposits, and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, have been digitized from the 7.5-minute (1:24,000, 1:25,000-scale; and 1:10,000, 1:20,000 and 1:30,000-scale in Puerto Rico only) and the 15-minute (1:48,000 and 1:62,500-scale; 1:63,360-scale in Alaska only) archive of the USGS Historical Topographic Map Collection (HTMC), or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. The compilation of 725,690 point and polygon mine symbols from approximately 106,350 maps across 50 states, the Commonwealth of Puerto Rico (PR) and the District of Columbia (DC) has been completed: Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), Nevada (NV), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York (NY), North Carolina (NC), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South Carolina (SC), South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA), West Virginia (WV), Wisconsin (WI), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the U.S., but an approximate timeline of when these activities occurred. These data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. These data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
This vector tile layer provides a detailed basemap for the world symbolized with a classic Esri topographic map style. This vector tile layer is similar in content and style to the World Topographic Map, which is delivered as raster fused map cache tile layer. This vector tile layer provides unique capabilities for customization and high-resolution display.This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with shaded relief for added context. The map is built using the same data sources used for the World Topographic Map raster basemap and other Esri basemaps. Use this MapThis map is designed to be used as a basemap layer or reference layer in a web map. You can add this layer to a web map and save as your own map. If you would like to use this map as a basemap layer in a web map, you may use the vector basemap Topographic web map.Customize this MapBecause this map is delivered as a vector tile layer, users can customize the map to change its content and symbology, including fonts. Users are able to turn on and off layers, change symbols for layers, switch to alternate local language (in some areas), and refine the treatment of disputed boundaries. See the Vector Basemap group for other vector tile layers. For details on how to customize this map, please refer to these articles on the ArcGIS Online Blog and view the Esri Vector Basemaps Reference Document.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental assessments such as vegetation distribution patterns. The bathymetry "footprint" is a database that can be used as a tool to provide a quick search of collection dates corresponding to bathymetric coverages within each LTRM pool.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
2-foot and 10-foot elevation contours derived from the Spring 2012 Minnesota Department of Natural Resources (MN DNR) LiDAR dataset.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
A feature service is also available here: https://gis.ducks.org/datasets/duinc::minnesota-restorable-wetlandsHISTORY: In October 2000, a Restorable Wetlands Working Group formed to begin mapping all of the restorable wetlands in the glaciated tallgrass Prairie Pothole Region of Minnesota and Iowa. Today, fewer than 10% of the original wetlands - once of unparalleled importance to continental waterbird populations - are left in existence. Fortunately, wetlands once drained for agriculture may be restored to many of their historic functions. Restoration of multiple wetland functions is of utmost effectiveness when focused at priority restoration landscapes, therefore data on the historic distribution of wetlands is an integral part of developing strategic regional habitat restoration plans.Opportunistic wetland restorations often fail to attain out expectations for wetland function. Nevertheless, between $70 - $100,000,000 are spent annually in Minnesota for wetland restoration. A strategic plan for wetland restoration can make these expenditures more effective; however, a strategic wetland restoration plan requires a priori information on the distribution and extent of restorable wetlands. The collective goal of the Restorable Wetlands Working Group is the eventual development of a set of multi-agency decision support tools that collectively comprise a comprehensive environmental management plan for wetlands - all based on the same base data layers and developed in joint consultation. An effort is underway to delineate restorable wetlands in all intensively farmed areas of MN and IA.A pilot project determined the best technique to map drained wetlands in agricultural landscapes was photointerpretation. This pilot project evaluated the accuracy of three potential delineation techniques: digital hydric soils databases, digital elevation models, and manual stereoscopic photointerpretation on high-altitude color infrared aerial photographs. The project covered nearly 4,000 square miles of different land forms and wetland characteristics. After mapping was completed, some 1,500 drained wetlands were observed in the field to assess the accuracy of each technique. Only photointerpretation provided reliable results.One area that fell into the pilot study was the Okabena quadrangle in east-central Jackson County in Minnesota. Okabena vividly illustrates the potential of humans to alter the natural landscape. While Okabena historically encompassed more than 8,940 acres of depressional wetland - 27% of the total area of Okabena - after nearly 100 years of agricultural drainage only 1,280 acres of those original wetlands remain, representing an 86% reduction. When empirical models used to estimate duck pairs on individual wetlands are applied to the change from historic to current wetland habitat within Okabena, they estimate a 92% reduction in the habitat potential for common dabbling duck species.The Okabena quadrangle's wetland density once exceeded that of most of the remaining U.S. Prairie Pothole Region. Without strong incentives for wetland conservation and effective methods to delineate high-priority landscapes for restoration, the Okabena quadrangle foretells one possible future for much of the mixed-grass Prairie Pothole Region further west.The Final Status map was completed in 2012.Contact Information:Rex JohnsonUnited States Fish and Wildlife Service21932 State Highway 210Fergus Falls, MN 56537(218) 736-0606rex_johnson@fws.govPhotointerpretationNational Aerial Photography Program (NAPP) (1:40,000 scale) color infrared (CIR) photographs acquired in April and May, 1991 and 1992, were viewed in stereo pairs at 5X magnification using a Cartographic Engineering stereoscope. A Mylar overlay was mounted on one photo of each stereo pair and a rectangular work area was delineated on the overlay comprising one-quarter of a USGS 7.5 min topographic quadrangle. A minimum of 4 fiduciary marks were placed on the overlay to enable geographic rectification of digital data covering the work area. One fiduciary mark was placed at the corner of the US Geological Survey (USGS) 7.5 min quadrangle and others at conspicuous road intersections near the other 3 corners of the work area. Drained depressional wetlands were delineated on the Mylar overlay within the work area using a 6X0 (.13 mm diameter) rapidograph pen and indelible ink. Collateral data was consulted during the delineation process. These data consisted of published county soil surveys and descriptions of hydric soils, USDA Farm Service Agency compliance slides (aerial 35 mm slides) acquired in 1993 (immediately after a period of intense precipitation), USGS 7.5 min topographic maps, and National Wetlands Inventory (NWI) maps. Black and white NAPP photographs (1:40,000 scale) acquired primarily in August and September, 1996, were reviewed and rejected as collateral data because they were acquired under dry conditions.Other specific photointerpretation protocols were:1. All drained depressional wetlands, regardless of size, were delineated.2. NWI-delineated wetlands with a Ad@ (partially drained) modifier in the classification code were not delineated unless the original delineation failed to encompass the complete historic wetland area.3. NWI-delineated wetlands that did not contain a Ad@ modifier in the classification code were delineated if the original delineation did not include the entire historic wetland area.4. Wetlands identified on NWI maps which did not exhibit wetland characteristics (i.e. hydrology, hydrophytes, etc) on new (1992) CIR photography were delineated even if no evidence of drainage was apparent.5. Wetlands not delineated on NWI maps, and in cropland, were delineated.6. Wetlands not delineated on NWI maps, and in grassland, were not delineated unless evidence of drainage was observed on the aerial photo.7. Wetlands not delineated on NWI maps, and in trees, were not delineated.Tolerances:Scanned line data were converted to a polygon using a 6 m fuzzy tolerance. Open polygons were manually closed and cleaned with a 1.2 m fuzzy tolerance which was used for all subsequent data processing.Datafile Description and Attribute Definitions[County_Name]_nwx - National Wetlands Inventory delineations (see https://www.fws.gov/program/national-wetlands-inventory/wetlands-mapper for NWI delineation standards). Note: Wetland classifications in these data often differ slightly from the original NWI classification. NWI wetland classifications were simplified for these data by removing mixed classes and multiple special modifiers, and by standardizing letter case. In each case of mixed classes and multiple special modifiers, the first class or special modifier was retained.AttributesRestorable - 0 = Islands and the Universal Polygon100 = Restorable depressional wetland delineated using protocols described aboveCounty Name – The name of the county in which the center of the polygon is located.State Name – The name of the state.FIPS – The FIPS code.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
10 foot topography map of Scott County, Minnesota.