This dataset represents post-nourishment digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The Lidar DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. The topobathy DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and were created from a combined LAS dataset of lidar data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected October 5-11, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 foot [ft]) cell size and was created from a LAS dataset of terrestrial light detection and ranging (LiDAR) data with an average point spacing of 0.137 m (0.45 ft). LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019).
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
This dataset is a pre-nourishment digital elevation model (DEM) of the beach topography of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. Lidar data were collected June 24, 2021, using a boat mounted Velodyne VLP-16 unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and nearshore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1 meter (m; 3.28084 ft) cell size and was created from Lidar data representing beach topography and sonar data representing bathymetry extending approximately 700-800 m offshore. The data cover an approximately 1.75 square kilometer survey area. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected August 22-23, 2022 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit and methodology similar to that described by Richards and Huizinga (2018). Single-beam sonar data were collected August 23, 2022 using a Ceescope echosounder and methodology similar to that described by Wilson and Richards (2006).This project followed similar methods to that of Wagner, Lund, and Sanks (2020), who completed a similar survey in 2019.
The vertical land change activity focuses on the detection, analysis, and explanation of topographic change. These detection techniques include both quantitative methods, for example, using difference metrics derived from multi-temporal topographic digital elevation models (DEMs), such as, light detection and ranging (lidar), National Elevation Dataset (NED), Shuttle Radar Topography Mission (SRTM), and Interferometric Synthetic Aperture Radar (IFSAR), and qualitative methods, for example, using multi-temporal aerial photography to visualize topographic change. The geographic study areas of this activity are in Itasca and St. Louis counties in the northern Minnesota Mesabi Iron Range. Available multi-temporal lidar, NED, SRTM, IFSAR, and other topographic elevation datasets, as well as aerial photography and multi-spectral image data were identified and downloaded for these study area counties. Mining (vector) features were obtained from the Minnesota Department of Natural Resources and St. Louis Government Services Center. These features were used to spatially locate the study areas within Itasca and St. Louis counties. Previously developed differencing methods (Gesch, 2006) were used to develop difference raster datasets of NED/SRTM (1947-2000 date range) and SRTM/IFSAR (2000-2008 date range). The difference rasters were evaluated to exclude difference values that were below a specified vertical change threshold, which was applied spatially by National Land Cover Dataset (NLCD) 1992 and 2006 land cover type, respectively. This spatial application of the vertical change threshold values improved the overall ability to detect vertical change because threshold values in bare earth areas were distinguished from threshold values in heavily vegetated areas.High-resolution (1-3 m) DEMs, generated from lidar point cloud data, were acquired for Itasca and St. Louis counties in Minnesota from the Minnesota Department of Natural Resources. ESRI Mosaic Datasets were generated from lidar point-cloud data and available topographic DEMs for the specified study areas. These data were analyzed to estimate volumetric changes on the land surface at three different periods with lidar acquisitions occurring for Itasca County between April 5, 2012 to April 28, 2012 and St. Louis County between May 3, 2011 to June 1, 2011. A recent difference raster dataset time span (2007-2012 date range) was analyzed by differencing the Minnesota lidar-derived DEMs and an IFSAR-derived dataset. The IFSAR-derived data were resampled to the resolution of the lidar DEM (approximately 1-m resolution) and compared with the lidar-derived DEM. Land cover based threshold values were applied spatially to detect vertical change using the lidar/IFSAR difference dataset. Itasca County included metadata describing vertical root mean square error (RMSE) values for different land cover types. This allowed additional refinement of the spatially explicit threshold values. A single RMSE value was used for St. Louis County because RMSE values for land cover types were not provided.References: Gesch, Dean B., 2006, An inventory and assessment of significant topographic changes in the United States Brookings, S. Dak., South Dakota State University, Ph.D. dissertation, 234 p, at https://topotools.cr.usgs.gov/pdfs/DGesch_dissertation_Nov2006.pdf.
These data are digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Duluth Entry, Duluth, Minnesota. A LAS dataset was used to create DEMs of 10 meter (m; 32.8084 feet) and 1 m (3.28084 feet) resolution, covering the approximately 1.75 square kilometer surveyed area. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.094 meters (m); multibeam sonar, 0.501 m; single-beam sonar, 1.876 m. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected August 22-23, 2022 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit and methodology similar to that described by Richards and Huizinga (2018). Single-beam sonar data were collected August 23, 2022 using a Ceescope echosounder and methodology similar to that described by Wilson and Richards (2006). This project followed similar methods to that of Wagner, Lund, and Sanks (2020), who completed a similar survey in 2019.
10 foot topography map of Scott County, Minnesota.
2-foot and 10-foot elevation contours derived from the Spring 2012 Minnesota Department of Natural Resources (MN DNR) LiDAR dataset.
The Minnesota Department of Natural Resources contracted with Sanborn Map Co., Inc. to provide lidar (Light Detection and Ranging) mapping services for the South Dakota portion of the Minnesota River Basin. Utilizing multi-return systems, lidar data in the form of 3-dimensional positions of a dense set of mass points was collected for approximately 1,946 square miles.
The vendor delivered the data to the DNR in several formats:
1) One-meter digital elevation model
2) Edge-of-water breaklines
3) Classified LAS formatted point cloud data
DNR staff created three additional products: two-foot contours, building outlines and hillshades.
The data are in UTM Zone 14 coordinates.
This metadata record was created at the Minnesota Geospatial Information Office by combining information supplied by Sanborn and the DNR.
The lidar data for Crow Wing County was collected under contract by the county. Thus, the data format is not entirely consistent with some of the other lidar data collected by the State of Minnesota. Specifically, the Crow Wing County collect required classification of only Bare Earth in the lidar LAS files, so there is no information on buildings, vegetation, or model key points.
Breaklines captured as part of this effort are also a bit different. In Crow Wing County the breaklines are 3D Polyline features rather than 3D Polygon features. They also include road centerlines, stream courses and other features that are not part of the Statewide collect specifications. However, the breaklines do not have z-values associated with them so the DEMs have not been hydro-flattened.
This metadata record was created at the Minnesota Geospatial Information Office by combining information supplied by Merrick & Company, Crow Wing County, and the Minnesota Department of Natural Resources.
The Bedrock Topography map represents the elevation (in feet above mean sea level) of the top of bedrock and the bottom of Quaternary sediments mapped in Pipestone County, Minnesota. The Depth to Bedrock map portrays the thickness (in feet) of Quaternary sediments overlying the bedrock surface. The depth to bedrock is equal to the depth from the land surface to the underlying bedrock surface.
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.
This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu
Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.
Maps are best when viewed with RED/CYAN anaglyph glasses!
A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.
World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.
Continental United States: 3-D grayscale map of the Lower 48.
Western United States: 3-D grayscale map of the Western United States with state boundaries.
Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.
Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.
Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.
Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.
Minneapolis, MN: 3-D topographical map of South Minneapolis.
Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.
North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.
St. Paul, MN: 3-D topographical map of St. Paul.
Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.
Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.
Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.
Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.
Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.
Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.
Blaine, MN: 3-D map of Blaine and the Mississippi River.
White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.
Maple Grove, MN: 3-D topographical mmap of the NW suburbs of the Twin Cities.
The Bedrock Topography map represents the elevation (in feet above mean sea level) of the top of bedrock and the bottom of Quaternary sediments mapped in Dakota County, Minnesota. The Depth to Bedrock map portrays the thickness (in feet) of Quaternary sediments overlying the bedrock surface. The depth to bedrock is equal to the depth from the land surface to the underlying bedrock surface.
This map portrays our current geologic understanding of the temporal and geographic distribution of units within major Precambrian terranes and of the Phanerozoic strata. The state wide data is mapped at a scale of 1:500,000 and the county bedrock datasets (Becker, Brown, Meeker, Isanti, Cass) are mapped at a 1:100,000 scale. A Story Map displaying this data can be found at Minnesota's Bedrock Geology story map.The western part of the mapped Precambrian terrane in the state wide dataset is inferred largely from geophysical maps, anchored locally by drilling. In many places, contacts are drawn between units of the same or similar apparent rock type (and same unit label); these are recognized as geometrically distinct, though geophysically or lithologically similar. Digital files for the state wide bedrock (http://hdl.handle.net/11299/101466) corresponding to this map allow removal of Cretaceous, Paleozoic, and some parts of Mesoproterozoic strata to reveal an interpretation of the underlying Precambrian bedrock.
For additional state wide data see: (http://hdl.handle.net/11299/98043) which contains files associated with Bedrock Topography, Depth to Bedrock, and locations of Outcrop and Geochronologic analyses. Individual county bedrock can be found and downloaded at the University of Minnesota's Digital Conservancy.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains a collection of features that describe the physical terrain.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental assessments such as vegetation distribution patterns. The bathymetry "footprint" is a database that can be used as a tool to provide a quick search of collection dates corresponding to bathymetric coverages within each LTRM pool.
This dataset consists of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (lidar) data representing the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The point data is the same as that in the LAS dataset used to create a digital elevation model (DEM) for the approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected October 5-11, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
Geochronology is the science of determining the age of rocks, fossils, and sediments and other materials. This database contains geochronologic data in GIS point format for published geochronological dates on Precambrian rocks, acquired and published by the Minnesota Geological along with selected published dates from adjacent. Compiled by the MGS for distribution. The file contains a full reference for each sample. To view the data on the web just click on this link to the Geochronology sample locations with the Minnesota bedrock geology and topography web map.
This dataset represents post-nourishment digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The Lidar DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. The topobathy DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and were created from a combined LAS dataset of lidar data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected October 5-11, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.