Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document provides a clear and practical guide to understanding missing data mechanisms, including Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). Through real-world scenarios and examples, it explains how different types of missingness impact data analysis and decision-making. It also outlines common strategies for handling missing data, including deletion techniques and imputation methods such as mean imputation, regression, and stochastic modeling.Designed for researchers, analysts, and students working with real-world datasets, this guide helps ensure statistical validity, reduce bias, and improve the overall quality of analysis in fields like public health, behavioral science, social research, and machine learning.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistical models are essential tools in data analysis. However, missing data plays a pivotal role in impacting the assumptions and effectiveness of statistical models, especially when there is a significant amount of missing data. This study addresses one of the core assumptions supporting many statistical models, the assumption of unidimensionality. It examines the impact of missing data rates and imputation methods on fulfilling this assumption. The study employs three imputation methods: Corrected Item Mean, multiple imputation, and expectation maximization, assessing their performance across nineteen levels of missing data rates, and examining their impact on the assumption of unidimensionality using several indicators (Cronbach’s alpha, corrected correlation coefficients, factor analysis (Eigenvalues (, , and cumulative variance, and communalities). The study concluded that all imputation methods used effectively provided data that maintained the unidimensionality assumption, regardless of missing data rates. Additionally, it was found that most of the unidimensionality indicators increased in value as missing data rates rose.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.
This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.
To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).
IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.
In this dataset, we include the original and imputed values for the following variables:
Water temperature (Tw)
Dissolved oxygen (DO)
Electrical conductivity (EC)
pH
Turbidity (Turb)
Nitrite (NO2-)
Nitrate (NO3-)
Total Nitrogen (TN)
Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].
More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.
If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For multisource data, blocks of variable information from certain sources are likely missing. Existing methods for handling missing data do not take structures of block-wise missing data into consideration. In this article, we propose a multiple block-wise imputation (MBI) approach, which incorporates imputations based on both complete and incomplete observations. Specifically, for a given missing pattern group, the imputations in MBI incorporate more samples from groups with fewer observed variables in addition to the group with complete observations. We propose to construct estimating equations based on all available information, and integrate informative estimating functions to achieve efficient estimators. We show that the proposed method has estimation and model selection consistency under both fixed-dimensional and high-dimensional settings. Moreover, the proposed estimator is asymptotically more efficient than the estimator based on a single imputation from complete observations only. In addition, the proposed method is not restricted to missing completely at random. Numerical studies and ADNI data application confirm that the proposed method outperforms existing variable selection methods under various missing mechanisms. Supplementary materials for this article are available online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Consisting of six multi-label datasets from the UCI Machine Learning repository.
Each dataset contains missing values which have been artificially added at the following rates: 5, 10, 15, 20, 25, and 30%. The “amputation” was performed using the “Missing Completely at Random” mechanism.
File names are represented as follows:
amp_DB_MR.arff
where:
DB = original dataset;
MR = missing rate.
For more details, please read:
IEEE Access article (in review process)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
When designing repeated measures studies, both the amount and the pattern of missing outcome data can affect power. The chance that an observation is missing may vary across measurements, and missingness may be correlated across measurements. For example, in a physiotherapy study of patients with Parkinson’s disease, increasing intermittent dropout over time yielded missing measurements of physical function. In this example, we assume data are missing completely at random, since the chance that a data point was missing appears to be unrelated to either outcomes or covariates. For data missing completely at random, we propose noncentral F power approximations for the Wald test for balanced linear mixed models with Gaussian responses. The power approximations are based on moments of missing data summary statistics. The moments were derived assuming a conditional linear missingness process. The approach provides approximate power for both complete-case analyses, which include independent sampling units where all measurements are present, and observed-case analyses, which include all independent sampling units with at least one measurement. Monte Carlo simulations demonstrate the accuracy of the method in small samples. We illustrate the utility of the method by computing power for proposed replications of the Parkinson’s study.
Alignment and phylogenetic trees may be opened and visualized by software capable of handling Newick and FASTA file formats.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MAR, missing at random; MCAR, missing completely at random; NMAR, not missing at random; np, number of participants.aLittle's test, p
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The windspeed data are daily aggregated values for wind speed data for Entebbe International Airport, located at Entebbe, Uganda. This data has undergone multivariate imputations given that the initial dataset for the period 1995 through 2008 had over 10% missing completely at random (MCAR).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Parameters of age mixing in sexual partnerships of infected individuals at different sampling coverage (%) when missing individuals were missing completely at random (MCAR), missing at random (MAR) with at most 30%, 50%, and 70% women in the sample.
The purpose of this dataset is to prevent consistent procesing times. One can add it to train.csv and experiment with a very simple df.join(this.csv). Since the missing rows seem to have some values that are completely missing not at random, they should have some meaning attached to them.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: In longitudinal epidemiological studies there may be individuals with rich phenotype data who die or are lost to follow-up before providing DNA for genetic studies. Often, the genotypic and phenotypic data of the relatives are available. Two strategies for analyzing the incomplete data are to exclude ungenotyped subjects from analysis (the complete-case method, CC) and to include phenotyped but ungenotyped individuals in analysis by using relatives' genotypes for genotype imputation (GI). In both strategies, the information in the phenotypic data was not used to handle the missing-genotype problem. Methods: We propose a phenotypically enriched genotypic imputation (PEGI) method that uses the EM (expectation-maximization)-based maximum likelihood method to incorporate observed phenotypes into genotype imputation. Results: Our simulations with genotypes missing completely at random show that, for a single-nucleotide polymorphism (SNP) with moderate to strong effect on a phenotype, PEGI improves power more than GI without excess type I errors. Using the Framingham Heart Study data set, we compare the ability of the PEGI, GI, and CC to detect the associations between 5 SNPs and age at natural menopause. Conclusion: The PEGI method may improve power to detect an association over both CC and GI under many circumstances.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
A challenge in proteomics is that many observations are missing with the probability of missingness increasing as abundance decreases. Adjusting for this informative missingness is required to assess accurately which proteins are differentially abundant. We propose an empirical Bayesian random censoring threshold (EBRCT) model that takes the pattern of missingness in account in the identification of differential abundance. We compare our model with four alternatives, one that considers the missing values as missing completely at random (MCAR model), one with a fixed censoring threshold for each protein species (fixed censoring model) and two imputation models, k-nearest neighbors (IKNN) and singular value thresholding (SVTI). We demonstrate that the EBRCT model bests all alternative models when applied to the CPTAC study 6 benchmark data set. The model is applicable to any label-free peptide or protein quantification pipeline and is provided as an R script.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The mixed model for repeated measures (MMRM) analysis is sometimes used as a primary statistical analysis for a longitudinal randomized clinical trial. When the MMRM analysis is implemented in ordinary statistical software, the standard error of the treatment effect is estimated by assuming orthogonality between the fixed effects and covariance parameters, based on the characteristics of the normal distribution. However, orthogonality does not hold unless the normality assumption of the error distribution holds, and/or the missing data are derived from the missing completely at random structure. Therefore, assuming orthogonality in the MMRM analysis is not preferable. However, without the assumption of orthogonality, the small-sample bias in the standard error of the treatment effect is significant. Nonetheless, there is no method to improve small-sample performance. Furthermore, there is no software that can easily implement inferences on treatment effects without assuming orthogonality. Hence, we propose two small-sample adjustment methods inflating standard errors that are reasonable in ideal situations and achieve empirical conservatism even in general situations. We also provide an R package to implement these inference processes. The simulation results show that one of the proposed small-sample adjustment methods performs particularly well in terms of underestimation bias of standard errors; consequently, the proposed method is recommended. When using the MMRM analysis, our proposed method is recommended if the sample size is not large and between-group heteroscedasticity is expected.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 2. This file comprises the output of the Little’s test of missing completely at random (MCAR) and the multiple imputing by using the expectation-maximum (EM) algorithm in SPSS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We consider estimating the conditional prevalence of a disease from data pooled according to the group testing mechanism. Consistent estimators have been proposed in the literature, but they rely on the data being available for all individuals. In infectious disease studies where group testing is frequently applied, the covariate is often missing for some individuals. There, unless the missing mechanism occurs completely at random, applying the existing techniques to the complete cases without adjusting for missingness does not generally provide consistent estimators, and finding appropriate modifications is challenging. We develop a consistent spline estimator, derive its theoretical properties, and show how to adapt local polynomial and likelihood estimators to the missing data problem. We illustrate the numerical performance of our methods on simulated and real examples. Supplementary materials for this article are available online.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document provides a clear and practical guide to understanding missing data mechanisms, including Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). Through real-world scenarios and examples, it explains how different types of missingness impact data analysis and decision-making. It also outlines common strategies for handling missing data, including deletion techniques and imputation methods such as mean imputation, regression, and stochastic modeling.Designed for researchers, analysts, and students working with real-world datasets, this guide helps ensure statistical validity, reduce bias, and improve the overall quality of analysis in fields like public health, behavioral science, social research, and machine learning.