100+ datasets found
  1. Z

    Missing data in the analysis of multilevel and dependent data (Examples)

    • data.niaid.nih.gov
    Updated Jul 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Grund; Oliver Lüdtke; Alexander Robitzsch (2023). Missing data in the analysis of multilevel and dependent data (Examples) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7773613
    Explore at:
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    IPN - Leibniz Institute for Science and Mathematics Education
    University of Hamburg
    Authors
    Simon Grund; Oliver Lüdtke; Alexander Robitzsch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").

    The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:

    ID = group identifier (1-2000) x = numeric (Level 1) y = numeric (Level 1) w = binary (Level 2)

    In all data sets, missing values are coded as "NA".

  2. Water-quality data imputation with a high percentage of missing values: a...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati (2021). Water-quality data imputation with a high percentage of missing values: a machine learning approach [Dataset]. http://doi.org/10.5281/zenodo.4731169
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 8, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.

    This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.

    To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).

    IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.

    In this dataset, we include the original and imputed values for the following variables:

    • Water temperature (Tw)

    • Dissolved oxygen (DO)

    • Electrical conductivity (EC)

    • pH

    • Turbidity (Turb)

    • Nitrite (NO2-)

    • Nitrate (NO3-)

    • Total Nitrogen (TN)

    Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].

    More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.

    If you use this dataset in your work, please cite our paper:
    Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318

  3. Data from: Benchmarking imputation methods for categorical biological data

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Mar 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthieu Gendre; Torsten Hauffe; Torsten Hauffe; Catalina Pimiento; Catalina Pimiento; Daniele Silvestro; Daniele Silvestro; Matthieu Gendre (2024). Benchmarking imputation methods for categorical biological data [Dataset]. http://doi.org/10.5281/zenodo.10800016
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 10, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Matthieu Gendre; Torsten Hauffe; Torsten Hauffe; Catalina Pimiento; Catalina Pimiento; Daniele Silvestro; Daniele Silvestro; Matthieu Gendre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 9, 2024
    Description

    Description:

    Welcome to the Zenodo repository for Publication Benchmarking imputation methods for categorical biological data, a comprehensive collection of datasets and scripts utilized in our research endeavors. This repository serves as a vital resource for researchers interested in exploring the empirical and simulated analyses conducted in our study.

    Contents:

    1. empirical_analysis:

      • Trait Dataset of Elasmobranchs: A collection of trait data for elasmobranch species obtained from FishBase , stored as RDS file.
      • Phylogenetic Tree: A phylogenetic tree stored as a TRE file.
      • Imputations Replicates (Imputation): Replicated imputations of missing data in the trait dataset, stored as RData files.
      • Error Calculation (Results): Error calculation results derived from imputed datasets, stored as RData files.
      • Scripts: Collection of R scripts used for the implementation of empirical analysis.
    2. simulation_analysis:

      • Input Files: Input files utilized for simulation analyses as CSV files
      • Data Distribution PDFs: PDF files displaying the distribution of simulated data and the missingness.
      • Output Files: Simulated trait datasets, trait datasets with missing data, and trait imputed datasets with imputation errors calculated as RData files.
      • Scripts: Collection of R scripts used for the simulation analysis.
    3. TDIP_package:

      • Scripts of the TDIP Package: All scripts related to the Trait Data Imputation with Phylogeny (TDIP) R package used in the analyses.

    Purpose:

    This repository aims to provide transparency and reproducibility to our research findings by making the datasets and scripts publicly accessible. Researchers interested in understanding our methodologies, replicating our analyses, or building upon our work can utilize this repository as a valuable reference.

    Citation:

    When using the datasets or scripts from this repository, we kindly request citing Publication Benchmarking imputation methods for categorical biological data and acknowledging the use of this Zenodo repository.

    Thank you for your interest in our research, and we hope this repository serves as a valuable resource in your scholarly pursuits.

  4. Additional file 5 of Heckman imputation models for binary or continuous MNAR...

    • springernature.figshare.com
    • datasetcatalog.nlm.nih.gov
    txt
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacques-Emmanuel Galimard; Sylvie Chevret; Emmanuel Curis; Matthieu Resche-Rigon (2023). Additional file 5 of Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors [Dataset]. http://doi.org/10.6084/m9.figshare.7038107.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Jacques-Emmanuel Galimard; Sylvie Chevret; Emmanuel Curis; Matthieu Resche-Rigon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R code to impute continuous outcome. (R 1 kb)

  5. H

    A Complete Aerosol Optical Depth Dataset with High Spatiotemporal Resolution...

    • dataverse.harvard.edu
    Updated Jan 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lianfa, Li; Jiajie, Wu (2021). A Complete Aerosol Optical Depth Dataset with High Spatiotemporal Resolution for Mainland China [Dataset]. http://doi.org/10.7910/DVN/RNSWRH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 19, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Lianfa, Li; Jiajie, Wu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2015 - Dec 31, 2018
    Area covered
    China
    Description

    We share the complete aerosol optical depth dataset with high spatial (1x1km^2) and temporal (daily) resolution and the Beijing 1954 projection (https://epsg.io/2412) for mainland China (2015-2018). The original aerosol optical depth images are from Multi-Angle Implementation of Atmospheric Correction Aerosol Optical Depth (MAIAC AOD) (https://lpdaac.usgs.gov/products/mcd19a2v006/) with the similar spatiotemporal resolution and the sinusoidal projection (https://en.wikipedia.org/wiki/Sinusoidal_projection). After projection conversion, eighteen tiles of MAIAC AOD were merged to obtain a large image of AOD covering the entire area of mainland China. Due to the conditions of clouds and high surface reflectance, each original MAIAC AOD image usually has many missing values, and the average missing percentage of each AOD image may exceed 60%. Such a high percentage of missing values severely limits applicability of the original MAIAC AOD dataset product. We used the sophisticated method of full residual deep networks (Li et al, 2020, https://ieeexplore.ieee.org/document/9186306) to impute the daily missing MAIAC AOD, thus obtaining the complete (no missing values) high-resolution AOD data product covering mainland China. The covariates used in imputation included coordinates, elevation, MERRA2 coarse-resolution PBLH and AOD variables, cloud fraction, high-resolution meteorological variables (air pressure, air temperature, relative humidity and wind speed) and/or time index etc. Ground monitoring data were used to generate high-resolution meteorological variables to ensure the reliability of interpolation. Overall, our daily imputation models achieved an average training R^2 of 0.90 with a range of 0.75 to 0.97 (average RMSE: 0.075, with a range of 0.026 to 0.32) and an average test R^2 of 0.90 with a range of 0.75 to 0.97 (average RMSE: 0.075 with a range of 0.026 to 0.32). With almost no difference between training metrics and test metrics, the high test R^2 and low test RMSE show the reliability of AOD imputation. In the evaluation using the ground AOD data from the monitoring stations of the Aerosol Robot Network (AERONET) in mainland China, our method obtained a R^2 of 0.78 and RMSE of 0.27, which further illustrated the reliability of the method. This database contains four datasets: - Daily complete high-resolution AOD image dataset for mainland China from January 1, 2015 to December 31, 2018. The archived resources contain 1461 images stored in 1461 files, and 3 summary Excel files. The table “CHN_AOD_INFO.xlsx” describing the properties of the 1461 images, including projection, training R^2 and RMSE, testing R^2 and RMSE, minmum, mean, median and maximum AOD that we predicted. - The table “Model_and_Accuracy_of_Meteorological_Elements.xlsx” describing the statistics of performance metrics in interpolation of high-resolution meteorological dataset. - The table “Evaluation_Using_AERONET_AOD.xlsx” showing the evaluation result of AERONET, including R^2, RMSE, and monitoring information used in this study.

  6. n

    Data from: Missing data estimation in morphometrics: how much is too much?

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Dec 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julien Clavel; Gildas Merceron; Gilles Escarguel (2013). Missing data estimation in morphometrics: how much is too much? [Dataset]. http://doi.org/10.5061/dryad.f0b50
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 5, 2013
    Dataset provided by
    Centre National de la Recherche Scientifique
    Authors
    Julien Clavel; Gildas Merceron; Gilles Escarguel
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Fossil-based estimates of diversity and evolutionary dynamics mainly rely on the study of morphological variation. Unfortunately, organism remains are often altered by post-mortem taphonomic processes such as weathering or distortion. Such a loss of information often prevents quantitative multivariate description and statistically controlled comparisons of extinct species based on morphometric data. A common way to deal with missing data involves imputation methods that directly fill the missing cases with model estimates. Over the last several years, several empirically determined thresholds for the maximum acceptable proportion of missing values have been proposed in the literature, whereas other studies showed that this limit actually depends on several properties of the study dataset and of the selected imputation method, and is by no way generalizable. We evaluate the relative performances of seven multiple imputation techniques through a simulation-based analysis under three distinct patterns of missing data distribution. Overall, Fully Conditional Specification and Expectation-Maximization algorithms provide the best compromises between imputation accuracy and coverage probability. Multiple imputation (MI) techniques appear remarkably robust to the violation of basic assumptions such as the occurrence of taxonomically or anatomically biased patterns of missing data distribution, making differences in simulation results between the three patterns of missing data distribution much smaller than differences between the individual MI techniques. Based on these results, rather than proposing a new (set of) threshold value(s), we develop an approach combining the use of multiple imputations with procrustean superimposition of principal component analysis results, in order to directly visualize the effect of individual missing data imputation on an ordinated space. We provide an R function for users to implement the proposed procedure.

  7. TidY_PracticE_DatasetS

    • kaggle.com
    zip
    Updated Jun 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DEBALINA MITRA (2023). TidY_PracticE_DatasetS [Dataset]. https://www.kaggle.com/datasets/debalinamitra/tidy-practice-datasets
    Explore at:
    zip(139335 bytes)Available download formats
    Dataset updated
    Jun 24, 2023
    Authors
    DEBALINA MITRA
    Description

    Original dataset that is shared on Github can be found here. These are hands on practice datasets that were linked through the Coursera Guided Project Certificate Course for Handling Missing Values in R, a part of Coursera Project Network. The datasets links were shared by the original author and instructor of the course Arimoro Olayinka Imisioluwa.

    Things you could do with this dataset: As a beginner in R, these datasets helped me to get a hang over making data clean and tidy and handling missing values(only numeric) using R. Good for anyone looking for a beginner to intermediate level understanding in these subjects.

    Here are my notebooks as kernels using these datasets and using a few more preloaded datasets in R, as suggested by the instructor. TidY DatA Practice MissinG DatA HandlinG - NumeriC

  8. Statistical Methods for Missing Data in Large Observational Studies [Methods...

    • icpsr.umich.edu
    Updated Oct 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Long, Qi (2025). Statistical Methods for Missing Data in Large Observational Studies [Methods Study], Georgia, 2013-2018 [Dataset]. http://doi.org/10.3886/ICPSR39526.v1
    Explore at:
    Dataset updated
    Oct 27, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Long, Qi
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/39526/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39526/terms

    Time period covered
    2013 - 2018
    Area covered
    United States, Georgia
    Description

    Health registries record data about patients with a specific health problem. These data may include age, weight, blood pressure, health problems, medical test results, and treatments received. But data in some patient records may be missing. For example, some patients may not report their weight or all of their health problems. Research studies can use data from health registries to learn how well treatments work. But missing data can lead to incorrect results. To address the problem, researchers often exclude patient records with missing data from their studies. But doing this can also lead to incorrect results. The fewer records that researchers use, the greater the chance for incorrect results. Missing data also lead to another problem: it is harder for researchers to find patient traits that could affect diagnosis and treatment. For example, patients who are overweight may get heart disease. But if data are missing, it is hard for researchers to be sure that trait could affect diagnosis and treatment of heart disease. In this study, the research team developed new statistical methods to fill in missing data in large studies. The team also developed methods to use when data are missing to help find patient traits that could affect diagnosis and treatment. To access the methods, software, and R package, please visit the Long Research Group website.

  9. f

    R scripts used for Monte Carlo simulations and data analyses.

    • plos.figshare.com
    zip
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lateef Babatunde Amusa; Twinomurinzi Hossana (2024). R scripts used for Monte Carlo simulations and data analyses. [Dataset]. http://doi.org/10.1371/journal.pone.0297037.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Lateef Babatunde Amusa; Twinomurinzi Hossana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R scripts used for Monte Carlo simulations and data analyses.

  10. Handling of Missing Data Induced by Time-Varying Covariates in Comparative...

    • icpsr.umich.edu
    Updated Oct 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Desai, Manisha (2025). Handling of Missing Data Induced by Time-Varying Covariates in Comparative Effectiveness Research HIV Patients [Methods Study], 2013-2018 [Dataset]. http://doi.org/10.3886/ICPSR39528.v1
    Explore at:
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Desai, Manisha
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/39528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39528/terms

    Time period covered
    2013 - 2018
    Description

    Researchers can use data from health registries or electronic health records to compare two or more treatments. Registries store data about patients with a specific health problem. These data include how well those patients respond to treatments and information about patient traits, such as age, weight, or blood pressure. But sometimes data about patient traits are missing. Missing data about patient traits can lead to incorrect study results, especially when traits change over time. For example, weight can change over time, and the patient may not report their weight at some points along the way. Researchers use statistical methods to fill in these missing data. In this study, the research team compared a new statistical method to fill in missing data with traditional methods. Traditional methods remove patients with missing data or fill in each missing number with a single estimate. The new method creates multiple possible estimates to fill in each missing number. To access the methods, software, and R package, please visit the SimulateCER GitHub and SimTimeVar CRAN website.

  11. d

    Slave Routes Datasets, 1650s - 1860s

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manning, Patrick; Liu, Yu (2023). Slave Routes Datasets, 1650s - 1860s [Dataset]. http://doi.org/10.7910/DVN/6HLXO3
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Manning, Patrick; Liu, Yu
    Time period covered
    Jan 1, 1650 - Jan 1, 1870
    Description

    Estimates of captives carried in the Atlantic slave trade by decade, 1650s to 1860s. Data: routes of voyages and recorded numbers of captives (10 variables and 33,345 cases of slave voyages). Data are organized into 40 routes linking African regions to overseas regions. Purpose: estimation of missing data and totals of captive flows. Method: techniques of Bayesian statistics to estimate missing data on routes and flows of captives. Also included is R-language code for simulating routes and populations

  12. D

    Data from: Using decision trees to understand structure in missing data

    • datasetcatalog.nlm.nih.gov
    • search.dataone.org
    • +2more
    Updated Jun 2, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mengersen, Kerrie L.; Tierney, Nicholas J.; Harden, Fiona A.; Harden, Maurice J. (2015). Using decision trees to understand structure in missing data [Dataset]. http://doi.org/10.5061/dryad.j4f19
    Explore at:
    Dataset updated
    Jun 2, 2015
    Authors
    Mengersen, Kerrie L.; Tierney, Nicholas J.; Harden, Fiona A.; Harden, Maurice J.
    Description

    Objectives: Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting: Data taken from employees at 3 different industrial sites in Australia. Participants: 7915 observations were included. Materials and methods: The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results: CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion: Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions: Researchers are encouraged to use CART and BRT models to explore and understand missing data.

  13. Developed R-codes

    • figshare.com
    pdf
    Updated Nov 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Asif (2025). Developed R-codes [Dataset]. http://doi.org/10.6084/m9.figshare.30636971.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 17, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Muhammad Asif
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Missing data imputation

  14. LTMP analysis 11-year versus 25-year with missing data

    • figshare.com
    txt
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alfonso Ruiz Moreno (2025). LTMP analysis 11-year versus 25-year with missing data [Dataset]. http://doi.org/10.6084/m9.figshare.28785908.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Alfonso Ruiz Moreno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains all the scripts and data used in the analysis of the LTMP data presented in the manuscript “Longer time series with missing data improve parameter estimation in State-Space mode in coral reef fish communities”. There are 22 files in total.All model fits were run on the HPC cluster at James Cook University. The model fit to the 11-year time series took approximately 3-5 days and the model fit to the 25-year time series took approximately 10-12 days. We did not include the model fits as they are big files (~12-30GB) but these can be obtained by running the corresponding scripts.LTMP data and data wranglingLTMP_data_1995_2005_prop_zero_40sp.RData: File containing 45 columns. The first column is Year and it contains the year for each observation in the dataset. The second column Reef contains the reef name, while the latitude and longitude are collected in the third column called Reef_lat and fourth column called Reef_long, respectively. The fifth column is called Shelf and contains the reef shelf position as I for Inner shelf positioning, M for Middle Shelf positioning and O for outer Shelf positioning. The rest of the columns contain the counts of the 40 species with the lowest proportion of zeros in the LTMP data. This contains data from 1995 to 2005.LTMP_data_1995_2019_prop_zero_40sp.RData: Same data structure as above but for the time series from 1995 to 2019 (includes Nas in some of the abundance counts).dw_11y_Pomacentrids.R and dw_25yNA_Pomacentrids.R scripts order species in pomacentrids and non-pomacentrids so the models can be fitted to the data. These files produce the data files LTMP_data_1995_2005_prop_zero_40sp_Pomacentrids.RData and LTMP_data_1995_2019_prop_zero_40sp_PomacentridsNA.RData.Model fittingLTMP_fit_40sp.R is a script that fits the model to the 11-year time series data. Specifically, the input dataset is LTMP_data_1995_2005_prop_zero_40sp_Pomacentrids.RData and the output fit is called LTMP_fit_40sp.RData.LTMP_fit_40sp_NA.R is a script that fits the model to the 25-year time series with missing data. Specifically, the input dataset is LTMP_data_1995_2019_prop_zero_40sp_PomacentridsNA.RData and the output fit is called LTMP_fit_40sp_NA.RData.Stan modelMARPLN_LV_Pomacentrids.stan: Stan code for the multivariate autoregressive Poisson-Lognormal model with the latent variables.MARPLN_LV_Pomacentrids_NA.stan: Stan code for same model as above, but this can deal with missing data.FiguresFigure 1 A and B.R and Figure 4.R produce the corresponding figures in the main text.Note that Figure 1A and B.R requires several files to produce the GBR and Australia maps. These are:Great_Barrier_Reef_Features.cpgGreat_Barrier_Reef_Features.dbfGreat_Barrier_Reef_Features.lyrGreat_Barrier_Reef_Features.shp.xmlReef_lat_long.csvGreat_Barrier_Reef_Features.prjGreat_Barrier_Reef_Features.sbnGreat_Barrier_Reef_Features.sbxGreat_Barrier_Reef_Features.shpGreat_Barrier_Reef_Features.shx

  15. f

    A Simple Optimization Workflow to Enable Precise and Accurate Imputation of...

    • datasetcatalog.nlm.nih.gov
    • acs.figshare.com
    • +1more
    Updated May 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dabke, Kruttika; Jones, Michelle R.; Kreimer, Simion; Parker, Sarah J. (2021). A Simple Optimization Workflow to Enable Precise and Accurate Imputation of Missing Values in Proteomic Data Sets [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000907442
    Explore at:
    Dataset updated
    May 3, 2021
    Authors
    Dabke, Kruttika; Jones, Michelle R.; Kreimer, Simion; Parker, Sarah J.
    Description

    Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification levelfragment levelimproved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set’s most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.

  16. Z

    Car Parts Dataset (without Missing Values)

    • data.niaid.nih.gov
    Updated Apr 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Godahewa, Rakshitha; Bergmeir, Christoph; Webb, Geoff (2021). Car Parts Dataset (without Missing Values) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3994910
    Explore at:
    Dataset updated
    Apr 1, 2021
    Dataset provided by
    PhD Student at Monash University
    Lecturer at Monash University
    Professor at Monash University
    Authors
    Godahewa, Rakshitha; Bergmeir, Christoph; Webb, Geoff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 2674 intermittent monthly time series that represent car parts sales from January 1998 to March 2002. It was extracted from R expsmooth package.

    The original dataset contains missing values and they have been replaced by zeros.

  17. Simulation study comparing length of time series

    • figshare.com
    txt
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alfonso Ruiz Moreno (2025). Simulation study comparing length of time series [Dataset]. http://doi.org/10.6084/m9.figshare.28783709.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Alfonso Ruiz Moreno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains all the scripts and data used in the simulation study titled “Simulation study comparing length of time series”, presented in the manuscript “Longer time series with missing data improve parameter estimation in State-Space mode in coral reef fish communities”. There are 108 files in total.All model fits were run on the HPC cluster at James Cook University. Depending on the simulated dataset, run times ranged from several hours up to 1-2 days per fit.Simulated datamultisp_sim_dat.R: Simulates communities of 20 species across 41 reefs. We used this script to generate 20 simulated communities, which were saved as sim_s1.RData through sim_s20.RData.Model fitting to simulated datafit_11y.R: Script to implement the Short fit from the manuscript. For each simulated dataset it: 1) saves posterior model parameters, 2) computes diagnostics (divergent transitions, tree depth saturation, E-BFMI), and 3) generates effective sample size (ESS) and R-hat plots. Example output: input simulated dataset sim_s1.RData and the output fit_11y_s1.RData. We include all fit output files up to fit_11y_s20.RData. We did not include the diagnostics figures in this repository, but users can get them by running the code.fit_18y.R: Script to implement the Intermediate fit from the main text. It follows the same process as above. Output files range from fit_18y_s1.RData up to fit_18y_s20.RDatafit_25yNA.R: Script to implement the Missing-data fit from the main text. It follows the same process as above. Output files range from fit_25yNA_s1.RData up to fit_25yNA_s20.RDatafit_25yc.R: Script to implement the Full fit from the main text. It follows the same process as above. Output files range from fit_25yc_s1.RData up to fit_25yc_s20.RDataStan modelMARPLN_LV.stan: Stan code for the multivariate autoregressive Poisson-Lognormal model with the latent variables. This model is used in the files fit_11y.R, fit_18y.R and fit_25yc.RMARPLN_LV_withNA.stan: Same as the model above, but it can also handle missing data. This model is used in the file fit_25yNA.R.Figure and analysis scriptFigure 2.R: This script calculates the accuracy and precision estimates for all key parameters across simulations and generates Figure 2 from the manuscript.

  18. Z

    Film Circulation dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loist, Skadi; Samoilova, Evgenia (Zhenya) (2024). Film Circulation dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7887671
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Film University Babelsberg KONRAD WOLF
    Authors
    Loist, Skadi; Samoilova, Evgenia (Zhenya)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”

    A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org

    Please cite this when using the dataset.

    Detailed description of the dataset:

    1 Film Dataset: Festival Programs

    The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.

    The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.

    The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.

    2 Survey Dataset

    The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.

    The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.

    The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.

    3 IMDb & Scripts

    The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.

    The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.

    The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.

    The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.

    The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.

    The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.

    The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.

    The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.

    The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.

    The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.

    The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.

    The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.

    The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.

    The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.

    The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.

    The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.

    The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.

    The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.

    The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.

    4 Festival Library Dataset

    The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.

    The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.

    The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This

  19. E

    Data from: STAD-R Descriptive statistics for experimental designs

    • data.moa.gov.et
    html
    Updated Jan 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CIMMYT Ethiopia (2025). STAD-R Descriptive statistics for experimental designs [Dataset]. https://data.moa.gov.et/dataset/hdl-11529-10853
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    CIMMYT Ethiopia
    Description

    STAD-R is a set of R programs that performs descriptive statistics, in order to make boxplots and histograms. STAD-R was designed because is necessary before than the thing, check if the dataset have the same number of repetitions, blocks, genotypes, environments, if we have missing values, where and how many, review the distributions and outliers, because is important to be sure that the dataset is complete and have the correct structure for do and other kind of analysis.

  20. t

    ESA CCI SM GAPFILLED Long-term Climate Data Record of Surface Soil Moisture...

    • researchdata.tuwien.ac.at
    • researchdata.tuwien.at
    zip
    Updated Sep 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wolfgang Preimesberger; Wolfgang Preimesberger; Pietro Stradiotti; Pietro Stradiotti; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo (2025). ESA CCI SM GAPFILLED Long-term Climate Data Record of Surface Soil Moisture from merged multi-satellite observations [Dataset]. http://doi.org/10.48436/3fcxr-cde10
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 5, 2025
    Dataset provided by
    TU Wien
    Authors
    Wolfgang Preimesberger; Wolfgang Preimesberger; Pietro Stradiotti; Pietro Stradiotti; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/

    This dataset contains information on the Surface Soil Moisture (SM) content derived from satellite observations in the microwave domain.

    Dataset Paper (Open Access)

    A description of this dataset, including the methodology and validation results, is available at:

    Preimesberger, W., Stradiotti, P., and Dorigo, W.: ESA CCI Soil Moisture GAPFILLED: an independent global gap-free satellite climate data record with uncertainty estimates, Earth Syst. Sci. Data, 17, 4305–4329, https://doi.org/10.5194/essd-17-4305-2025, 2025.

    Abstract

    ESA CCI Soil Moisture is a multi-satellite climate data record that consists of harmonized, daily observations coming from 19 satellites (as of v09.1) operating in the microwave domain. The wealth of satellite information, particularly over the last decade, facilitates the creation of a data record with the highest possible data consistency and coverage.
    However, data gaps are still found in the record. This is particularly notable in earlier periods when a limited number of satellites were in operation, but can also arise from various retrieval issues, such as frozen soils, dense vegetation, and radio frequency interference (RFI). These data gaps present a challenge for many users, as they have the potential to obscure relevant events within a study area or are incompatible with (machine learning) software that often relies on gap-free inputs.
    Since the requirement of a gap-free ESA CCI SM product was identified, various studies have demonstrated the suitability of different statistical methods to achieve this goal. A fundamental feature of such gap-filling method is to rely only on the original observational record, without need for ancillary variable or model-based information. Due to the intrinsic challenge, there was until present no global, long-term univariate gap-filled product available. In this version of the record, data gaps due to missing satellite overpasses and invalid measurements are filled using the Discrete Cosine Transform (DCT) Penalized Least Squares (PLS) algorithm (Garcia, 2010). A linear interpolation is applied over periods of (potentially) frozen soils with little to no variability in (frozen) soil moisture content. Uncertainty estimates are based on models calibrated in experiments to fill satellite-like gaps introduced to GLDAS Noah reanalysis soil moisture (Rodell et al., 2004), and consider the gap size and local vegetation conditions as parameters that affect the gapfilling performance.

    Summary

    • Gap-filled global estimates of volumetric surface soil moisture from 1991-2023 at 0.25° sampling
    • Fields of application (partial): climate variability and change, land-atmosphere interactions, global biogeochemical cycles and ecology, hydrological and land surface modelling, drought applications, and meteorology
    • Method: Modified version of DCT-PLS (Garcia, 2010) interpolation/smoothing algorithm, linear interpolation over periods of frozen soils. Uncertainty estimates are provided for all data points.
    • More information: See Preimesberger et al. (2025) and https://doi.org/10.5281/zenodo.8320869" target="_blank" rel="noopener">ESA CCI SM Algorithm Theoretical Baseline Document [Chapter 7.2.9] (Dorigo et al., 2023)

    Programmatic Download

    You can use command line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.

    #!/bin/bash

    # Set download directory
    DOWNLOAD_DIR=~/Downloads

    base_url="https://researchdata.tuwien.at/records/3fcxr-cde10/files"

    # Loop through years 1991 to 2023 and download & extract data
    for year in {1991..2023}; do
    echo "Downloading $year.zip..."
    wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
    unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
    rm "$DOWNLOAD_DIR/$year.zip"
    done

    Data details

    The dataset provides global daily estimates for the 1991-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention:

    ESACCI-SOILMOISTURE-L3S-SSMV-COMBINED_GAPFILLED-YYYYMMDD000000-fv09.1r1.nc

    Data Variables

    Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:

    • sm: (float) The Soil Moisture variable reflects estimates of daily average volumetric soil moisture content (m3/m3) in the soil surface layer (~0-5 cm) over a whole grid cell (0.25 degree).
    • sm_uncertainty: (float) The Soil Moisture Uncertainty variable reflects the uncertainty (random error) of the original satellite observations and of the predictions used to fill observation data gaps.
    • sm_anomaly: Soil moisture anomalies (reference period 1991-2020) derived from the gap-filled values (`sm`)
    • sm_smoothed: Contains DCT-PLS predictions used to fill data gaps in the original soil moisture field. These values are also provided for cases where an observation was initially available (compare `gapmask`). In this case, they provided a smoothed version of the original data.
    • gapmask: (0 | 1) Indicates grid cells where a satellite observation is available (1), and where the interpolated (smoothed) values are used instead (0) in the 'sm' field.
    • frozenmask: (0 | 1) Indicates grid cells where ERA5 soil temperature is <0 °C. In this case, a linear interpolation over time is applied.

    Additional information for each variable is given in the netCDF attributes.

    Version Changelog

    Changes in v9.1r1 (previous version was v09.1):

    • This version uses a novel uncertainty estimation scheme as described in Preimesberger et al. (2025).

    Software to open netCDF files

    These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

    References

    • Preimesberger, W., Stradiotti, P., and Dorigo, W.: ESA CCI Soil Moisture GAPFILLED: an independent global gap-free satellite climate data record with uncertainty estimates, Earth Syst. Sci. Data, 17, 4305–4329, https://doi.org/10.5194/essd-17-4305-2025, 2025.
    • Dorigo, W., Preimesberger, W., Stradiotti, P., Kidd, R., van der Schalie, R., van der Vliet, M., Rodriguez-Fernandez, N., Madelon, R., & Baghdadi, N. (2023). ESA Climate Change Initiative Plus - Soil Moisture Algorithm Theoretical Baseline Document (ATBD) Supporting Product Version 08.1 (version 1.1). Zenodo. https://doi.org/10.5281/zenodo.8320869
    • Garcia, D., 2010. Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis, 54(4), pp.1167-1178. Available at: https://doi.org/10.1016/j.csda.2009.09.020
    • Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, Bulletin of the American Meteorological Society, 85, 381 – 394, https://doi.org/10.1175/BAMS-85-3-381, 2004.

    Related Records

    The following records are all part of the ESA CCI Soil Moisture science data records community

    1

    ESA CCI SM MODELFREE Surface Soil Moisture Record

    <a href="https://doi.org/10.48436/svr1r-27j77" target="_blank"

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Simon Grund; Oliver Lüdtke; Alexander Robitzsch (2023). Missing data in the analysis of multilevel and dependent data (Examples) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7773613

Missing data in the analysis of multilevel and dependent data (Examples)

Explore at:
Dataset updated
Jul 20, 2023
Dataset provided by
IPN - Leibniz Institute for Science and Mathematics Education
University of Hamburg
Authors
Simon Grund; Oliver Lüdtke; Alexander Robitzsch
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").

The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:

ID = group identifier (1-2000) x = numeric (Level 1) y = numeric (Level 1) w = binary (Level 2)

In all data sets, missing values are coded as "NA".

Search
Clear search
Close search
Google apps
Main menu