Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID = group identifier (1-2000) x = numeric (Level 1) y = numeric (Level 1) w = binary (Level 2)
In all data sets, missing values are coded as "NA".
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.
This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.
To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).
IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.
In this dataset, we include the original and imputed values for the following variables:
Water temperature (Tw)
Dissolved oxygen (DO)
Electrical conductivity (EC)
pH
Turbidity (Turb)
Nitrite (NO2-)
Nitrate (NO3-)
Total Nitrogen (TN)
Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].
More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.
If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
Welcome to the Zenodo repository for Publication Benchmarking imputation methods for categorical biological data, a comprehensive collection of datasets and scripts utilized in our research endeavors. This repository serves as a vital resource for researchers interested in exploring the empirical and simulated analyses conducted in our study.
Contents:
empirical_analysis:
simulation_analysis:
TDIP_package:
Purpose:
This repository aims to provide transparency and reproducibility to our research findings by making the datasets and scripts publicly accessible. Researchers interested in understanding our methodologies, replicating our analyses, or building upon our work can utilize this repository as a valuable reference.
Citation:
When using the datasets or scripts from this repository, we kindly request citing Publication Benchmarking imputation methods for categorical biological data and acknowledging the use of this Zenodo repository.
Thank you for your interest in our research, and we hope this repository serves as a valuable resource in your scholarly pursuits.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
R code to impute continuous outcome. (R 1 kb)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We share the complete aerosol optical depth dataset with high spatial (1x1km^2) and temporal (daily) resolution and the Beijing 1954 projection (https://epsg.io/2412) for mainland China (2015-2018). The original aerosol optical depth images are from Multi-Angle Implementation of Atmospheric Correction Aerosol Optical Depth (MAIAC AOD) (https://lpdaac.usgs.gov/products/mcd19a2v006/) with the similar spatiotemporal resolution and the sinusoidal projection (https://en.wikipedia.org/wiki/Sinusoidal_projection). After projection conversion, eighteen tiles of MAIAC AOD were merged to obtain a large image of AOD covering the entire area of mainland China. Due to the conditions of clouds and high surface reflectance, each original MAIAC AOD image usually has many missing values, and the average missing percentage of each AOD image may exceed 60%. Such a high percentage of missing values severely limits applicability of the original MAIAC AOD dataset product. We used the sophisticated method of full residual deep networks (Li et al, 2020, https://ieeexplore.ieee.org/document/9186306) to impute the daily missing MAIAC AOD, thus obtaining the complete (no missing values) high-resolution AOD data product covering mainland China. The covariates used in imputation included coordinates, elevation, MERRA2 coarse-resolution PBLH and AOD variables, cloud fraction, high-resolution meteorological variables (air pressure, air temperature, relative humidity and wind speed) and/or time index etc. Ground monitoring data were used to generate high-resolution meteorological variables to ensure the reliability of interpolation. Overall, our daily imputation models achieved an average training R^2 of 0.90 with a range of 0.75 to 0.97 (average RMSE: 0.075, with a range of 0.026 to 0.32) and an average test R^2 of 0.90 with a range of 0.75 to 0.97 (average RMSE: 0.075 with a range of 0.026 to 0.32). With almost no difference between training metrics and test metrics, the high test R^2 and low test RMSE show the reliability of AOD imputation. In the evaluation using the ground AOD data from the monitoring stations of the Aerosol Robot Network (AERONET) in mainland China, our method obtained a R^2 of 0.78 and RMSE of 0.27, which further illustrated the reliability of the method. This database contains four datasets: - Daily complete high-resolution AOD image dataset for mainland China from January 1, 2015 to December 31, 2018. The archived resources contain 1461 images stored in 1461 files, and 3 summary Excel files. The table “CHN_AOD_INFO.xlsx” describing the properties of the 1461 images, including projection, training R^2 and RMSE, testing R^2 and RMSE, minmum, mean, median and maximum AOD that we predicted. - The table “Model_and_Accuracy_of_Meteorological_Elements.xlsx” describing the statistics of performance metrics in interpolation of high-resolution meteorological dataset. - The table “Evaluation_Using_AERONET_AOD.xlsx” showing the evaluation result of AERONET, including R^2, RMSE, and monitoring information used in this study.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Fossil-based estimates of diversity and evolutionary dynamics mainly rely on the study of morphological variation. Unfortunately, organism remains are often altered by post-mortem taphonomic processes such as weathering or distortion. Such a loss of information often prevents quantitative multivariate description and statistically controlled comparisons of extinct species based on morphometric data. A common way to deal with missing data involves imputation methods that directly fill the missing cases with model estimates. Over the last several years, several empirically determined thresholds for the maximum acceptable proportion of missing values have been proposed in the literature, whereas other studies showed that this limit actually depends on several properties of the study dataset and of the selected imputation method, and is by no way generalizable. We evaluate the relative performances of seven multiple imputation techniques through a simulation-based analysis under three distinct patterns of missing data distribution. Overall, Fully Conditional Specification and Expectation-Maximization algorithms provide the best compromises between imputation accuracy and coverage probability. Multiple imputation (MI) techniques appear remarkably robust to the violation of basic assumptions such as the occurrence of taxonomically or anatomically biased patterns of missing data distribution, making differences in simulation results between the three patterns of missing data distribution much smaller than differences between the individual MI techniques. Based on these results, rather than proposing a new (set of) threshold value(s), we develop an approach combining the use of multiple imputations with procrustean superimposition of principal component analysis results, in order to directly visualize the effect of individual missing data imputation on an ordinated space. We provide an R function for users to implement the proposed procedure.
Facebook
TwitterOriginal dataset that is shared on Github can be found here. These are hands on practice datasets that were linked through the Coursera Guided Project Certificate Course for Handling Missing Values in R, a part of Coursera Project Network. The datasets links were shared by the original author and instructor of the course Arimoro Olayinka Imisioluwa.
Things you could do with this dataset: As a beginner in R, these datasets helped me to get a hang over making data clean and tidy and handling missing values(only numeric) using R. Good for anyone looking for a beginner to intermediate level understanding in these subjects.
Here are my notebooks as kernels using these datasets and using a few more preloaded datasets in R, as suggested by the instructor. TidY DatA Practice MissinG DatA HandlinG - NumeriC
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/39526/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39526/terms
Health registries record data about patients with a specific health problem. These data may include age, weight, blood pressure, health problems, medical test results, and treatments received. But data in some patient records may be missing. For example, some patients may not report their weight or all of their health problems. Research studies can use data from health registries to learn how well treatments work. But missing data can lead to incorrect results. To address the problem, researchers often exclude patient records with missing data from their studies. But doing this can also lead to incorrect results. The fewer records that researchers use, the greater the chance for incorrect results. Missing data also lead to another problem: it is harder for researchers to find patient traits that could affect diagnosis and treatment. For example, patients who are overweight may get heart disease. But if data are missing, it is hard for researchers to be sure that trait could affect diagnosis and treatment of heart disease. In this study, the research team developed new statistical methods to fill in missing data in large studies. The team also developed methods to use when data are missing to help find patient traits that could affect diagnosis and treatment. To access the methods, software, and R package, please visit the Long Research Group website.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
R scripts used for Monte Carlo simulations and data analyses.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/39528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39528/terms
Researchers can use data from health registries or electronic health records to compare two or more treatments. Registries store data about patients with a specific health problem. These data include how well those patients respond to treatments and information about patient traits, such as age, weight, or blood pressure. But sometimes data about patient traits are missing. Missing data about patient traits can lead to incorrect study results, especially when traits change over time. For example, weight can change over time, and the patient may not report their weight at some points along the way. Researchers use statistical methods to fill in these missing data. In this study, the research team compared a new statistical method to fill in missing data with traditional methods. Traditional methods remove patients with missing data or fill in each missing number with a single estimate. The new method creates multiple possible estimates to fill in each missing number. To access the methods, software, and R package, please visit the SimulateCER GitHub and SimTimeVar CRAN website.
Facebook
TwitterEstimates of captives carried in the Atlantic slave trade by decade, 1650s to 1860s. Data: routes of voyages and recorded numbers of captives (10 variables and 33,345 cases of slave voyages). Data are organized into 40 routes linking African regions to overseas regions. Purpose: estimation of missing data and totals of captive flows. Method: techniques of Bayesian statistics to estimate missing data on routes and flows of captives. Also included is R-language code for simulating routes and populations
Facebook
TwitterObjectives: Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting: Data taken from employees at 3 different industrial sites in Australia. Participants: 7915 observations were included. Materials and methods: The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results: CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion: Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions: Researchers are encouraged to use CART and BRT models to explore and understand missing data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data imputation
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains all the scripts and data used in the analysis of the LTMP data presented in the manuscript “Longer time series with missing data improve parameter estimation in State-Space mode in coral reef fish communities”. There are 22 files in total.All model fits were run on the HPC cluster at James Cook University. The model fit to the 11-year time series took approximately 3-5 days and the model fit to the 25-year time series took approximately 10-12 days. We did not include the model fits as they are big files (~12-30GB) but these can be obtained by running the corresponding scripts.LTMP data and data wranglingLTMP_data_1995_2005_prop_zero_40sp.RData: File containing 45 columns. The first column is Year and it contains the year for each observation in the dataset. The second column Reef contains the reef name, while the latitude and longitude are collected in the third column called Reef_lat and fourth column called Reef_long, respectively. The fifth column is called Shelf and contains the reef shelf position as I for Inner shelf positioning, M for Middle Shelf positioning and O for outer Shelf positioning. The rest of the columns contain the counts of the 40 species with the lowest proportion of zeros in the LTMP data. This contains data from 1995 to 2005.LTMP_data_1995_2019_prop_zero_40sp.RData: Same data structure as above but for the time series from 1995 to 2019 (includes Nas in some of the abundance counts).dw_11y_Pomacentrids.R and dw_25yNA_Pomacentrids.R scripts order species in pomacentrids and non-pomacentrids so the models can be fitted to the data. These files produce the data files LTMP_data_1995_2005_prop_zero_40sp_Pomacentrids.RData and LTMP_data_1995_2019_prop_zero_40sp_PomacentridsNA.RData.Model fittingLTMP_fit_40sp.R is a script that fits the model to the 11-year time series data. Specifically, the input dataset is LTMP_data_1995_2005_prop_zero_40sp_Pomacentrids.RData and the output fit is called LTMP_fit_40sp.RData.LTMP_fit_40sp_NA.R is a script that fits the model to the 25-year time series with missing data. Specifically, the input dataset is LTMP_data_1995_2019_prop_zero_40sp_PomacentridsNA.RData and the output fit is called LTMP_fit_40sp_NA.RData.Stan modelMARPLN_LV_Pomacentrids.stan: Stan code for the multivariate autoregressive Poisson-Lognormal model with the latent variables.MARPLN_LV_Pomacentrids_NA.stan: Stan code for same model as above, but this can deal with missing data.FiguresFigure 1 A and B.R and Figure 4.R produce the corresponding figures in the main text.Note that Figure 1A and B.R requires several files to produce the GBR and Australia maps. These are:Great_Barrier_Reef_Features.cpgGreat_Barrier_Reef_Features.dbfGreat_Barrier_Reef_Features.lyrGreat_Barrier_Reef_Features.shp.xmlReef_lat_long.csvGreat_Barrier_Reef_Features.prjGreat_Barrier_Reef_Features.sbnGreat_Barrier_Reef_Features.sbxGreat_Barrier_Reef_Features.shpGreat_Barrier_Reef_Features.shx
Facebook
TwitterMissing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification levelfragment levelimproved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set’s most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 2674 intermittent monthly time series that represent car parts sales from January 1998 to March 2002. It was extracted from R expsmooth package.
The original dataset contains missing values and they have been replaced by zeros.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains all the scripts and data used in the simulation study titled “Simulation study comparing length of time series”, presented in the manuscript “Longer time series with missing data improve parameter estimation in State-Space mode in coral reef fish communities”. There are 108 files in total.All model fits were run on the HPC cluster at James Cook University. Depending on the simulated dataset, run times ranged from several hours up to 1-2 days per fit.Simulated datamultisp_sim_dat.R: Simulates communities of 20 species across 41 reefs. We used this script to generate 20 simulated communities, which were saved as sim_s1.RData through sim_s20.RData.Model fitting to simulated datafit_11y.R: Script to implement the Short fit from the manuscript. For each simulated dataset it: 1) saves posterior model parameters, 2) computes diagnostics (divergent transitions, tree depth saturation, E-BFMI), and 3) generates effective sample size (ESS) and R-hat plots. Example output: input simulated dataset sim_s1.RData and the output fit_11y_s1.RData. We include all fit output files up to fit_11y_s20.RData. We did not include the diagnostics figures in this repository, but users can get them by running the code.fit_18y.R: Script to implement the Intermediate fit from the main text. It follows the same process as above. Output files range from fit_18y_s1.RData up to fit_18y_s20.RDatafit_25yNA.R: Script to implement the Missing-data fit from the main text. It follows the same process as above. Output files range from fit_25yNA_s1.RData up to fit_25yNA_s20.RDatafit_25yc.R: Script to implement the Full fit from the main text. It follows the same process as above. Output files range from fit_25yc_s1.RData up to fit_25yc_s20.RDataStan modelMARPLN_LV.stan: Stan code for the multivariate autoregressive Poisson-Lognormal model with the latent variables. This model is used in the files fit_11y.R, fit_18y.R and fit_25yc.RMARPLN_LV_withNA.stan: Same as the model above, but it can also handle missing data. This model is used in the file fit_25yNA.R.Figure and analysis scriptFigure 2.R: This script calculates the accuracy and precision estimates for all key parameters across simulations and generates Figure 2 from the manuscript.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.
The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This
Facebook
TwitterSTAD-R is a set of R programs that performs descriptive statistics, in order to make boxplots and histograms. STAD-R was designed because is necessary before than the thing, check if the dataset have the same number of repetitions, blocks, genotypes, environments, if we have missing values, where and how many, review the distributions and outliers, because is important to be sure that the dataset is complete and have the correct structure for do and other kind of analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information on the Surface Soil Moisture (SM) content derived from satellite observations in the microwave domain.
A description of this dataset, including the methodology and validation results, is available at:
Preimesberger, W., Stradiotti, P., and Dorigo, W.: ESA CCI Soil Moisture GAPFILLED: an independent global gap-free satellite climate data record with uncertainty estimates, Earth Syst. Sci. Data, 17, 4305–4329, https://doi.org/10.5194/essd-17-4305-2025, 2025.
ESA CCI Soil Moisture is a multi-satellite climate data record that consists of harmonized, daily observations coming from 19 satellites (as of v09.1) operating in the microwave domain. The wealth of satellite information, particularly over the last decade, facilitates the creation of a data record with the highest possible data consistency and coverage.
However, data gaps are still found in the record. This is particularly notable in earlier periods when a limited number of satellites were in operation, but can also arise from various retrieval issues, such as frozen soils, dense vegetation, and radio frequency interference (RFI). These data gaps present a challenge for many users, as they have the potential to obscure relevant events within a study area or are incompatible with (machine learning) software that often relies on gap-free inputs.
Since the requirement of a gap-free ESA CCI SM product was identified, various studies have demonstrated the suitability of different statistical methods to achieve this goal. A fundamental feature of such gap-filling method is to rely only on the original observational record, without need for ancillary variable or model-based information. Due to the intrinsic challenge, there was until present no global, long-term univariate gap-filled product available. In this version of the record, data gaps due to missing satellite overpasses and invalid measurements are filled using the Discrete Cosine Transform (DCT) Penalized Least Squares (PLS) algorithm (Garcia, 2010). A linear interpolation is applied over periods of (potentially) frozen soils with little to no variability in (frozen) soil moisture content. Uncertainty estimates are based on models calibrated in experiments to fill satellite-like gaps introduced to GLDAS Noah reanalysis soil moisture (Rodell et al., 2004), and consider the gap size and local vegetation conditions as parameters that affect the gapfilling performance.
You can use command line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.
#!/bin/bash
# Set download directory
DOWNLOAD_DIR=~/Downloads
base_url="https://researchdata.tuwien.at/records/3fcxr-cde10/files"
# Loop through years 1991 to 2023 and download & extract data
for year in {1991..2023}; do
echo "Downloading $year.zip..."
wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
rm "$DOWNLOAD_DIR/$year.zip"
done
The dataset provides global daily estimates for the 1991-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention:
ESACCI-SOILMOISTURE-L3S-SSMV-COMBINED_GAPFILLED-YYYYMMDD000000-fv09.1r1.nc
Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:
Additional information for each variable is given in the netCDF attributes.
Changes in v9.1r1 (previous version was v09.1):
These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:
The following records are all part of the ESA CCI Soil Moisture science data records community
| 1 |
ESA CCI SM MODELFREE Surface Soil Moisture Record | <a href="https://doi.org/10.48436/svr1r-27j77" target="_blank" |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID = group identifier (1-2000) x = numeric (Level 1) y = numeric (Level 1) w = binary (Level 2)
In all data sets, missing values are coded as "NA".