Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typically applied to all records with missing values indiscriminately. We note that the effects of imputation can be strongly dependent on what is missing. To help make decisions about which records should be imputed, we propose to use a machine learning approach to estimate the imputation error for each case with missing data. The method is thought to be a practical approach to help users using imputation after the informed choice to impute the missing data has been made. To do this all patterns of missing values are simulated in all complete cases, enabling calculation of the “true error” in each of these new cases. The error is then estimated for each case with missing values by weighing the “true errors” by similarity. The method can also be used to test the performance of different imputation methods. A universal numerical threshold of acceptable error cannot be set since this will differ according to the data, research question, and analysis method. The effect of threshold can be estimated using the complete cases. The user can set an a priori relevant threshold for what is acceptable or use cross validation with the final analysis to choose the threshold. The choice can be presented along with argumentation for the choice rather than holding to conventions that might not be warranted in the specific dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.
This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.
To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).
IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.
In this dataset, we include the original and imputed values for the following variables:
Water temperature (Tw)
Dissolved oxygen (DO)
Electrical conductivity (EC)
pH
Turbidity (Turb)
Nitrite (NO2-)
Nitrate (NO3-)
Total Nitrogen (TN)
Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].
More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.
If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318
Facebook
TwitterReplication and simulation reproduction materials for the article "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Please see the README file for a summary of the contents and the Replication Guide for a more detailed description. Article abstract: Principled methods for analyzing missing values, based chiefly on multiple imputation, have become increasingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data and drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as well as real social science data, together with an applied example involving a large-scale electoral survey, illustrate MIDAS's accuracy and efficiency across a range of settings. We provide open-source software for implementing MIDAS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A variety of tools and methods have been used to measure behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD). Missing data is a major concern in ADHD behavioral studies. This study used a deep learning method to impute missing data in ADHD rating scales and evaluated the ability of the imputed dataset (i.e., the imputed data replacing the original missing values) to distinguish youths with ADHD from youths without ADHD. The data were collected from 1220 youths, 799 of whom had an ADHD diagnosis, and 421 were typically developing (TD) youths without ADHD, recruited in Northern Taiwan. Participants were assessed using the Conners’ Continuous Performance Test, the Chinese versions of the Conners’ rating scale-revised: short form for parent and teacher reports, and the Swanson, Nolan, and Pelham, version IV scale for parent and teacher reports. We used deep learning, with information from the original complete dataset (referred to as the reference dataset), to perform missing data imputation and generate an imputation order according to the imputed accuracy of each question. We evaluated the effectiveness of imputation using support vector machine to classify the ADHD and TD groups in the imputed dataset. The imputed dataset can classify ADHD vs. TD up to 89% accuracy, which did not differ from the classification accuracy (89%) using the reference dataset. Most of the behaviors related to oppositional behaviors rated by teachers and hyperactivity/impulsivity rated by both parents and teachers showed high discriminatory accuracy to distinguish ADHD from non-ADHD. Our findings support a deep learning solution for missing data imputation without introducing bias to the data.
Facebook
TwitterData Cleaning or Data cleansing is to clean the data by imputing missing values, smoothing noisy data, and identifying or removing outliers. In general, the missing values are found due to collection error or data is corrupted.
Here some info in details :Feature Engineering - Handling Missing Value
Wine_Quality.csv dataset have the numerical missing data, and students_Performance.mv.csv dataset have Numerical and categorical missing data's.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID = group identifier (1-2000) x = numeric (Level 1) y = numeric (Level 1) w = binary (Level 2)
In all data sets, missing values are coded as "NA".
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multiple imputation (MI) is effectively used to deal with missing data when the missing mechanism is missing at random. However, MI may not be effective when the missing mechanism is not missing at random (NMAR). In such cases, additional information is required to obtain an appropriate imputation. Pham et al. (2019) proposed the calibrated-δ adjustment method, which is a multiple imputation method using population information. It provides appropriate imputation in two NMAR settings. However, the calibrated-δ adjustment method has two problems. First, it can be used only when one variable has missing values. Second, the theoretical properties of the variance estimator have not been provided. This article proposes a multiple imputation method using population information that can be applied when several variables have missing values. The proposed method is proven to include the calibrated-δ adjustment method. It is shown that the proposed method provides a consistent estimator for the parameter of the imputation model in an NMAR situation. The asymptotic variance of the estimator obtained by the proposed method and its estimator are also given.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This synthetic dataset contains 4,362 rows and five columns, including both numerical and categorical data. It is designed for data cleaning, imputation, and analysis tasks, featuring structured missing values at varying percentages (63%, 4%, 47%, 31%, and 9%).
The dataset includes:
- Category (Categorical): Product category (A, B, C, D)
- Price (Numerical): Randomized product prices
- Rating (Numerical): Ratings between 1 to 5
- Stock (Categorical): Availability status (In Stock, Out of Stock)
- Discount (Numerical): Discount percentage
This dataset is ideal for practicing missing data handling, exploratory data analysis (EDA), and machine learning preprocessing.
Facebook
TwitterThe code provided is related to training an autoencoder, evaluating its performance, and using it for imputing missing values in a dataset. Let's break down each part:Training the Autoencoder (train_autoencoder function):This function takes an autoencoder model and the input features as input.It trains the autoencoder using the input features as both input and target output (hence features, features).The autoencoder is trained for a specified number of epochs (epochs) with a given batch size (batch_size).The shuffle=True argument ensures that the data is shuffled before each epoch to prevent the model from memorizing the input order.After training, it returns the trained autoencoder model and the training history.Evaluating the Autoencoder (evaluate_autoencoder function):This function takes a trained autoencoder model and the input features as input.It uses the trained autoencoder to predict the reconstructed features from the input features.It calculates Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2) scores between the original and reconstructed features.These metrics provide insights into how well the autoencoder is able to reconstruct the input features.Imputing with the Autoencoder (impute_with_autoencoder function):This function takes a trained autoencoder model and the input features as input.It identifies missing values (e.g., -9999) in the input features.For each row with missing values, it predicts the missing values using the trained autoencoder.It replaces the missing values with the predicted values.The imputed features are returned as output.To reuse this code:Load your dataset and preprocess it as necessary.Build an autoencoder model using the build_autoencoder function.Train the autoencoder using the train_autoencoder function with your input features.Evaluate the performance of the autoencoder using the evaluate_autoencoder function.If your dataset contains missing values, use the impute_with_autoencoder function to impute them with the trained autoencoder.Use the trained autoencoder for any other relevant tasks, such as feature extraction or anomaly detection.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document provides a clear and practical guide to understanding missing data mechanisms, including Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). Through real-world scenarios and examples, it explains how different types of missingness impact data analysis and decision-making. It also outlines common strategies for handling missing data, including deletion techniques and imputation methods such as mean imputation, regression, and stochastic modeling.Designed for researchers, analysts, and students working with real-world datasets, this guide helps ensure statistical validity, reduce bias, and improve the overall quality of analysis in fields like public health, behavioral science, social research, and machine learning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
Welcome to the Zenodo repository for Publication Benchmarking imputation methods for categorical biological data, a comprehensive collection of datasets and scripts utilized in our research endeavors. This repository serves as a vital resource for researchers interested in exploring the empirical and simulated analyses conducted in our study.
Contents:
empirical_analysis:
simulation_analysis:
TDIP_package:
Purpose:
This repository aims to provide transparency and reproducibility to our research findings by making the datasets and scripts publicly accessible. Researchers interested in understanding our methodologies, replicating our analyses, or building upon our work can utilize this repository as a valuable reference.
Citation:
When using the datasets or scripts from this repository, we kindly request citing Publication Benchmarking imputation methods for categorical biological data and acknowledging the use of this Zenodo repository.
Thank you for your interest in our research, and we hope this repository serves as a valuable resource in your scholarly pursuits.
Facebook
TwitterThe folder contains three datasets: Zomato restaurants, Restaurants on Yellow Pages, and Arabic poetry. Where all datasets have been taken from Kaggle and made some modifications by adding missing values, where the missing values are referred to as symbol (?). The experiment has been done to experiment with the processes of imputation missing values on nominal values. The missing values in the three datasets are in the range of 10%-80%.
The Arabic dataset has several modifications as follows: 1. Delete the columns that contain English values such as Id, poem_link, poet link. The reason is the need to evaluate the ERAR method on the Arabic data set. 2. Add diacritical marks to some records to check the effect of diacritical marks during frequent itemset generation. note: the results of the experiment on the Arabic dataset will be find in the paper under the title "Missing values imputation in Arabic datasets using enhanced robust association rules"
Facebook
Twitter
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
When dealing with missing data in clinical trials, it is often convenient to work under simplifying assumptions, such as missing at random (MAR), and follow up with sensitivity analyses to address unverifiable missing data assumptions. One such sensitivity analysis, routinely requested by regulatory agencies, is the so-called tipping point analysis, in which the treatment effect is re-evaluated after adding a successively more extreme shift parameter to the predicted values among subjects with missing data. If the shift parameter needed to overturn the conclusion is so extreme that it is considered clinically implausible, then this indicates robustness to missing data assumptions. Tipping point analyses are frequently used in the context of continuous outcome data under multiple imputation. While simple to implement, computation can be cumbersome in the two-way setting where both comparator and active arms are shifted, essentially requiring the evaluation of a two-dimensional grid of models. We describe a computationally efficient approach to performing two-way tipping point analysis in the setting of continuous outcome data with multiple imputation. We show how geometric properties can lead to further simplification when exploring the impact of missing data. Lastly, we propose a novel extension to a multi-way setting which yields simple and general sufficient conditions for robustness to missing data assumptions.
Facebook
TwitterThis dataset contains 1,000 employee records across different departments and cities, designed for practicing data cleaning, preprocessing, and handling missing values in real-world scenarios.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Datasets for experiments on missing data imputation of numerical type.
Facebook
TwitterThe dataset is created by imputing the missing values of ICR - Identifying Age Related Conditions competition dataset. In this dataset depending on feature selection some subversions are also created. - Version 1 : The version is created by dropping all the rows with missing values. - Version 2 : The version is created by 'BQ' and 'EL' columns which consist most of the missing values. To remove the remaining missing values rows with missing values are deleted. - Version 3 : The version is created by imputing mean values by column average. Median is considered as measure of average. - Version 4 : The version is created by imputing missing values of 'BQ' and 'EL' by linear regression models and remaining missing values are imputed by average value of the column where missing value is present. 'AB', 'AF', 'AH', 'AM', 'CD', 'CF', 'DN', 'FL' and 'GL' are used to calculate the missing values of 'BQ'. 'CU', 'GE' and 'GL' are used to calculate missing values of 'EL'. Models are found in the version4/imputer. Two subversions are created by extraction only important features of the dataset. - Version 5 : The version is created by imputing missing values using KNNImputer. Two subversions are created by extracting only important features. For the categorical feature 'EJ', 'A' is encoded as 0 and 'B' is encoded as '1'. For more details how the transformations of the dataset is done visit this notebook.
Facebook
TwitterFossil-based estimates of diversity and evolutionary dynamics mainly rely on the study of morphological variation. Unfortunately, organism remains are often altered by post-mortem taphonomic processes such as weathering or distortion. Such a loss of information often prevents quantitative multivariate description and statistically controlled comparisons of extinct species based on morphometric data. A common way to deal with missing data involves imputation methods that directly fill the missing cases with model estimates. Over the last several years, several empirically determined thresholds for the maximum acceptable proportion of missing values have been proposed in the literature, whereas other studies showed that this limit actually depends on several properties of the study dataset and of the selected imputation method, and is by no way generalizable. We evaluate the relative performances of seven multiple imputation techniques through a simulation-based analysis under three distinct patterns of missing data distribution. Overall, Fully Conditional Specification and Expectation-Maximization algorithms provide the best compromises between imputation accuracy and coverage probability. Multiple imputation (MI) techniques appear remarkably robust to the violation of basic assumptions such as the occurrence of taxonomically or anatomically biased patterns of missing data distribution, making differences in simulation results between the three patterns of missing data distribution much smaller than differences between the individual MI techniques. Based on these results, rather than proposing a new (set of) threshold value(s), we develop an approach combining the use of multiple imputations with procrustean superimposition of principal component analysis results, in order to directly visualize the effect of individual missing data imputation on an ordinated space. We provide an R function for users to implement the proposed procedure.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for the paper "Identifying missing data handling methods with text mining".
It contains the type of missing data handling method used by a given paper.
id: ID of the article
origin: Source journal
pub_year: Publication year
discipline: Discipline category of the article based on origin
about_missing: Is the article about missing data handling? (0 - no, 1 - yes)
imputation: Was some kind of imputation technique used in the article? (0 - no, 1 - yes)
advanced: Was some kind of advanced imputation technique used in the article? (0 - no, 1 - yes)
deletion: Was some kind of deletion technique used in the article? (0 - no, 1 - yes)
text_tokens: Snipped out parts from the original articles
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typically applied to all records with missing values indiscriminately. We note that the effects of imputation can be strongly dependent on what is missing. To help make decisions about which records should be imputed, we propose to use a machine learning approach to estimate the imputation error for each case with missing data. The method is thought to be a practical approach to help users using imputation after the informed choice to impute the missing data has been made. To do this all patterns of missing values are simulated in all complete cases, enabling calculation of the “true error” in each of these new cases. The error is then estimated for each case with missing values by weighing the “true errors” by similarity. The method can also be used to test the performance of different imputation methods. A universal numerical threshold of acceptable error cannot be set since this will differ according to the data, research question, and analysis method. The effect of threshold can be estimated using the complete cases. The user can set an a priori relevant threshold for what is acceptable or use cross validation with the final analysis to choose the threshold. The choice can be presented along with argumentation for the choice rather than holding to conventions that might not be warranted in the specific dataset.