Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typically applied to all records with missing values indiscriminately. We note that the effects of imputation can be strongly dependent on what is missing. To help make decisions about which records should be imputed, we propose to use a machine learning approach to estimate the imputation error for each case with missing data. The method is thought to be a practical approach to help users using imputation after the informed choice to impute the missing data has been made. To do this all patterns of missing values are simulated in all complete cases, enabling calculation of the “true error” in each of these new cases. The error is then estimated for each case with missing values by weighing the “true errors” by similarity. The method can also be used to test the performance of different imputation methods. A universal numerical threshold of acceptable error cannot be set since this will differ according to the data, research question, and analysis method. The effect of threshold can be estimated using the complete cases. The user can set an a priori relevant threshold for what is acceptable or use cross validation with the final analysis to choose the threshold. The choice can be presented along with argumentation for the choice rather than holding to conventions that might not be warranted in the specific dataset.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Replication and simulation reproduction materials for the article "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Please see the README file for a summary of the contents and the Replication Guide for a more detailed description. Article abstract: Principled methods for analyzing missing values, based chiefly on multiple imputation, have become increasingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data and drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as well as real social science data, together with an applied example involving a large-scale electoral survey, illustrate MIDAS's accuracy and efficiency across a range of settings. We provide open-source software for implementing MIDAS.
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries. This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges. To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)). IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases. In this dataset, we include the original and imputed values for the following variables: Water temperature (Tw) Dissolved oxygen (DO) Electrical conductivity (EC) pH Turbidity (Turb) Nitrite (NO2-) Nitrate (NO3-) Total Nitrogen (TN) Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC]. More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318. If you use this dataset in your work, please cite our paper: Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318 {"references": ["Rodr\u00edguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318"]}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
Welcome to the Zenodo repository for Publication Benchmarking imputation methods for categorical biological data, a comprehensive collection of datasets and scripts utilized in our research endeavors. This repository serves as a vital resource for researchers interested in exploring the empirical and simulated analyses conducted in our study.
Contents:
empirical_analysis:
simulation_analysis:
TDIP_package:
Purpose:
This repository aims to provide transparency and reproducibility to our research findings by making the datasets and scripts publicly accessible. Researchers interested in understanding our methodologies, replicating our analyses, or building upon our work can utilize this repository as a valuable reference.
Citation:
When using the datasets or scripts from this repository, we kindly request citing Publication Benchmarking imputation methods for categorical biological data and acknowledging the use of this Zenodo repository.
Thank you for your interest in our research, and we hope this repository serves as a valuable resource in your scholarly pursuits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Penalized regression methods are used in many biomedical applications for variable selection and simultaneous coefficient estimation. However, missing data complicates the implementation of these methods, particularly when missingness is handled using multiple imputation. Applying a variable selection algorithm on each imputed dataset will likely lead to different sets of selected predictors. This article considers a general class of penalized objective functions which, by construction, force selection of the same variables across imputed datasets. By pooling objective functions across imputations, optimization is then performed jointly over all imputed datasets rather than separately for each dataset. We consider two objective function formulations that exist in the literature, which we will refer to as “stacked” and “grouped” objective functions. Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package miselect. Simulations demonstrate that the “stacked” approaches are more computationally efficient and have better estimation and selection properties. We apply these methods to data from the University of Michigan ALS Patients Biorepository aiming to identify the association between environmental pollutants and ALS risk. Supplementary materials for this article are available online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets and computer code for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the computer code (".R") and the data sets from both example analyses (Examples 1 and 2). The data sets are available in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID
= group identifier (1-2000)
x
= numeric (Level 1)
y
= numeric (Level 1)
w
= binary (Level 2)
In all data sets, missing values are coded as "NA".
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Fossil-based estimates of diversity and evolutionary dynamics mainly rely on the study of morphological variation. Unfortunately, organism remains are often altered by post-mortem taphonomic processes such as weathering or distortion. Such a loss of information often prevents quantitative multivariate description and statistically controlled comparisons of extinct species based on morphometric data. A common way to deal with missing data involves imputation methods that directly fill the missing cases with model estimates. Over the last several years, several empirically determined thresholds for the maximum acceptable proportion of missing values have been proposed in the literature, whereas other studies showed that this limit actually depends on several properties of the study dataset and of the selected imputation method, and is by no way generalizable. We evaluate the relative performances of seven multiple imputation techniques through a simulation-based analysis under three distinct patterns of missing data distribution. Overall, Fully Conditional Specification and Expectation-Maximization algorithms provide the best compromises between imputation accuracy and coverage probability. Multiple imputation (MI) techniques appear remarkably robust to the violation of basic assumptions such as the occurrence of taxonomically or anatomically biased patterns of missing data distribution, making differences in simulation results between the three patterns of missing data distribution much smaller than differences between the individual MI techniques. Based on these results, rather than proposing a new (set of) threshold value(s), we develop an approach combining the use of multiple imputations with procrustean superimposition of principal component analysis results, in order to directly visualize the effect of individual missing data imputation on an ordinated space. We provide an R function for users to implement the proposed procedure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An adequate imputation of missing data would significantly preserve the statistical power and avoid erroneous conclusions. In the era of big data, machine learning is a great tool to infer the missing values. The root means square error (RMSE) and the proportion of falsely classified entries (PFC) are two standard statistics to evaluate imputation accuracy. However, the Cox proportional hazards model using various types requires deliberate study, and the validity under different missing mechanisms is unknown. In this research, we propose supervised and unsupervised imputations and examine four machine learning-based imputation strategies. We conducted a simulation study under various scenarios with several parameters, such as sample size, missing rate, and different missing mechanisms. The results revealed the type-I errors according to different imputation techniques in the survival data. The simulation results show that the non-parametric “missForest” based on the unsupervised imputation is the only robust method without inflated type-I errors under all missing mechanisms. In contrast, other methods are not valid to test when the missing pattern is informative. Statistical analysis, which is improperly conducted, with missing data may lead to erroneous conclusions. This research provides a clear guideline for a valid survival analysis using the Cox proportional hazard model with machine learning-based imputations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the data sets used in both example analyses (Examples 1 and 2) in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID
= group identifier (1-2000)
x
= numeric (Level 1)
y
= numeric (Level 1)
w
= binary (Level 2)
In all data sets, missing values are coded as "NA".
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification levelfragment levelimproved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set’s most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.
This study was an evaluation of multiple imputation strategies to address missing data using the New Approach to Evaluating Supplementary Homicide Report (SHR) Data Imputation, 1990-1995 (ICPSR 20060) dataset.
We propose a framework for meta-analysis of qualitative causal inferences. We integrate qualitative counterfactual inquiry with an approach from the quantitative causal inference literature called extreme value bounds. Qualitative counterfactual analysis uses the observed outcome and auxiliary information to infer what would have happened had the treatment been set to a different level. Imputing missing potential outcomes is hard and when it fails, we can fill them in under best- and worst-case scenarios. We apply our approach to 63 cases that could have experienced transitional truth commissions upon democratization, 8 of which did. Prior to any analysis, the extreme value bounds around the average treatment effect on authoritarian resumption are 100 percentage points wide; imputation shrinks the width of these bounds to 51 points. We further demonstrate our method by aggregating specialists' beliefs about causal effects gathered through an expert survey, shrinking the width of the bounds to 44 points.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.
Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of machine learning models. A regression-based missing data imputation method using light gradient boosting machine algorithm was employed to impute over 60% of the missing data.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
Latest edition information
For the third edition (September 2023), the variables NSECM20, NSECMJ20, SC2010M, SC20SMJ, SC20SMN, SOC20M and SOC20O have been replaced with new versions. Further information on the SOC revisions can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The purpose of the project was to learn more about patterns of homicide in the United States by strengthening the ability to make imputations for Supplementary Homicide Report (SHR) data with missing values. Supplementary Homicide Reports (SHR) and local police data from Chicago, Illinois, St. Louis, Missouri, Philadelphia, Pennsylvania, and Phoenix, Arizona, for 1990 to 1995 were merged to create a master file by linking on overlapping information on victim and incident characteristics. Through this process, 96 percent of the cases in the SHR were matched with cases in the police files. The data contain variables for three types of cases: complete in SHR, missing offender and incident information in SHR but known in police report, and missing offender and incident information in both. The merged file allows estimation of similarities and differences between the cases with known offender characteristics in the SHR and those in the other two categories. The accuracy of existing data imputation methods can be assessed by comparing imputed values in an "incomplete" dataset (the SHR), generated by the three imputation strategies discussed in the literature, with the actual values in a known "complete" dataset (combined SHR and police data). Variables from both the Supplemental Homicide Reports and the additional police report offense data include incident date, victim characteristics, offender characteristics, incident details, geographic information, as well as variables regarding the matching procedure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In real-world networks, node attributes are often only partially observed, necessitating imputation to support analysis or enable downstream tasks. However, most existing imputation methods overlook the rich information contained within the connectivity among nodes. This research is inspired by the premise that leveraging all available information should yield improved imputation, provided a sufficient association between attributes and edges. Consequently, we introduce a joint latent space model that produces a low-dimensional representation of the data and simultaneously captures the edge and node attribute information. This model relies on the pooling of information induced by shared latent variables, thus improving the prediction of node attributes and providing a more effective attribute imputation method. Our approach uses variational inference to approximate posterior distributions for these latent variables, resulting in predictive distributions for missing values. Through numerical experiments, conducted on both simulated data and real-world networks, we demonstrate that our proposed method successfully harnesses the joint structure information and significantly improves the imputation of missing attributes, specifically when the observed information is weak. Additional results, implementation details, a Python implementation, and the code reproducing the results are available online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typically applied to all records with missing values indiscriminately. We note that the effects of imputation can be strongly dependent on what is missing. To help make decisions about which records should be imputed, we propose to use a machine learning approach to estimate the imputation error for each case with missing data. The method is thought to be a practical approach to help users using imputation after the informed choice to impute the missing data has been made. To do this all patterns of missing values are simulated in all complete cases, enabling calculation of the “true error” in each of these new cases. The error is then estimated for each case with missing values by weighing the “true errors” by similarity. The method can also be used to test the performance of different imputation methods. A universal numerical threshold of acceptable error cannot be set since this will differ according to the data, research question, and analysis method. The effect of threshold can be estimated using the complete cases. The user can set an a priori relevant threshold for what is acceptable or use cross validation with the final analysis to choose the threshold. The choice can be presented along with argumentation for the choice rather than holding to conventions that might not be warranted in the specific dataset.