Vector polygon map data of property parcels from Coahoma County, Mississippi containing 15,835 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
The Digital Geologic-GIS Map of Vicksburg National Military Park, Mississippi and Louisiana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (vick_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (vick_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (vick_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (vick_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (vick_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (vick_geology_metadata_faq.pdf). Please read the vick_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Mississippi State University, Department of Geosciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (vick_geology_metadata.txt or vick_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The National Land Cover Database 2001 land cover layer was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. This landcover map and all documents pertaining to it are considered "provisional" until a formal accuracy assessment can be conducted. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer et al. (2004) and http://www.mrlc.gov/mrlc2k.asp.The NLCD 2001 is created by partitioning the U.S. into mapping zones. A total of 66 mapping zones were delineated within the conterminous U.S. based on ecoregion and geographical characteristics, edge matching features and the size requirement of Landsat mosaics. Mapping zone 37B encompasses whole or portions of several states, including the states of Texas, Louisiana, and Mississippi. Questions about the NLCD mapping zone 37B can be directed to the NLCD 2001 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo, Illinois to Minneapolis, Minnesota. These data were published as a series of 89 survey maps and index. In the 1990's, the Upper Midwest Environmental Sciences Center (UMESC) in conjunction with the US Army Corps of Engineers Upper Mississippi River Restoration- Environmental Management Program -- Long Term Resource Monitoring Program element (LTRMP) for the Upper Mississippi River automated the maps' land cover/use symbology to create a turn of the century/pre-impoundment land cover/use data set. Other data on the maps that were not automated include; elevation contours, water depth soundings, proposed water control structures (e.g., wing dams), levees, benchmarks, railroads, and city streets.
no abstract provided
description: This map was produced by the Division of Realty to depict landownership at Mississippi Sandhill Crane National Wildlife Refuge. It was generated from rectified aerial photography, cadastral surveys and recorded documents.; abstract: This map was produced by the Division of Realty to depict landownership at Mississippi Sandhill Crane National Wildlife Refuge. It was generated from rectified aerial photography, cadastral surveys and recorded documents.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset corresponds to the annual total land change over coastal Louisiana, from 1988 to 2018. The data is derived from Lansat classification performed by NASA’s Delta-X project. Details on Delta-X can be found in https://deltax.jpl.nasa.gov
and
Jensen, D. J., Cavanaugh, K. C., Thompson, D. R., Fagherazzi, S., Cortese, L., & Simard, M. (2022). Leveraging the Historical Landsat Catalog for a Remote Sensing Model of Wetland Accretion in Coastal Louisiana. Journal of Geophysical Research: Biogeosciences, 127(6). https://doi.org/10.1029/2022JG006794
Pre- and post-hurricane Katrina LiDAR datasets of Hancock, Harrison, and Jackson Counties, MS, were merged into a seamless coverage by URS. The pre-Katrina LiDAR data was collected by EarthData International at a 5-meter posting density during the period of February 25 to March 30, 2005. Woolpert and USACE collected the post-Katina LiDAR data. Woolpert acquired 1-meter posting density data of...
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
This work has been published in the Nature Scientific Data. Suggested citation: Rajib et al. The changing face of floodplains in the Mississippi River Basin detected by a 60-year land use change dataset. Nature Scientific Data 8, 271 (2021). https://doi.org/10.1038/s41597-021-01048-w
Here, we present the first-available dataset that quantifies land use change along the floodplains of the Mississippi River Basin (MRB) covering 60 years (1941-2000) at 250-m resolution. The MRB is the fourth largest river basin in the world (3.3 million sq km) comprising 41% of the United States and draining into the Gulf of Mexico, an area with an annually expanding and contracting hypoxic zone resulting from basin-wide over-enrichment of nutrients. The basin represents one of the most engineered systems in the world, and includes complex web of dams, levees, floodplains, and dikes. This new dataset reveals the heterogenous spatial extent of land use transformations in MRB floodplains. The domination transition of floodplains has been from natural ecosystems (e.g. wetlands or forests) to agricultural use. A steady increase in developed land use within the MRB floodplains was also evident.
To maximize the reuse of this dataset, our contributions also include four unique products: (i) a Google Earth Engine interactive map visualization interface: https://gishub.org/mrb-floodplain (ii) a Google-based Python code that runs in any internet browser: https://colab.research.google.com/drive/1vmIaUCkL66CoTv4rNRIWpJXYXp4TlAKd?usp=sharing (iii) an online tutorial with visualizations facilitating classroom application of the code: https://serc.carleton.edu/hydromodules/steps/241489.html (iv) an instructional video showing how to run the code and partially reproduce the floodplain land use change dataset: https://youtu.be/wH0gif_y15A
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.
This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu
Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.
Maps are best when viewed with RED/CYAN anaglyph glasses!
A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.
World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.
Continental United States: 3-D grayscale map of the Lower 48.
Western United States: 3-D grayscale map of the Western United States with state boundaries.
Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.
Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.
Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.
Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.
Minneapolis, MN: 3-D topographical map of South Minneapolis.
Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.
North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.
St. Paul, MN: 3-D topographical map of St. Paul.
Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.
Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.
Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.
Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.
Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.
Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.
Blaine, MN: 3-D map of Blaine and the Mississippi River.
White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.
Maple Grove, MN: 3-D topographical map of the NW suburbs of the Twin Cities.
Minnesota River: 3-D topographical map of the Minnesota River Valley highlighting the river bend in Mankato.
St. Croix River: 3-D topographical map of the St. Croix extending from Taylors Falls to the Mississippi confluence.
Mississippi River, Lake Pepin: 3-D topographical map of the confluence of Chippewa Creek and the Mississippi River.
Red Wing, MN: 3-D topographical map of Redwing, MN on the Mississippi River.
Winona, Minnesota: 3-D topographical map of Winona, MN highlighting the Mississippi River.
Cannon Falls, MN: 3-D topographical map of Cannon Falls area.
Rochester, MN: 3-D topographical map of Rochester and the surrounding area.
Northfield, MN: 3-D topographical map of Northfield and the surrounding area.
St. Louis River, MN: 3-D map of the St. Louis River and Duluth, Minnesota.
Lake Itasca, MN: 3-D map of the source of the Mississippi River.
Elmore, MN: 3-D topographical map of Elmore, MN in south-central Minnesota.
Glencoe, MN: 3-D topographical map of Glencoe, MN.
New Prague, MN: 3-D topographical map of the New Prague in south-central Minnesota.
Plainview, MN: 3-D topographical map of Plainview, MN.
Waterville-Morristown: 3-D map of the Waterville-Morris area in south-central Minnesota.
Eau Claire, WI: 3-D map of Eau Claire highlighting abandon river channels.
Dubuque, IA: 3-D topographical map of Dubuque and the Mississippi River.
Londonderry, NH: 3-D topographical map of Londonderry, NH.
Santa Cruz, CA: 3-D topographical map of Santa Cruz, California.
Crater Lake, OR: 3-D topographical map of Crater Lake, Oregon.
Mt. Rainier, WA: 3-D topographical map of Mt. Rainier in Washington.
Grand Canyon, AZ: 3-D topographical map of the Grand Canyon.
District of Columbia: 3-D map highlighting the confluence of the rivers and the Mall.
Ireland: 3-D grayscale map of Ireland.
New Jersey: 3-D grayscale map of New Jersey.
SP Crater, AZ: 3-D map of random craters in the San Francisco Mountains.
Mars Water Features: 3-D grayscale map showing surface water features from Mars.
This dataset consists of a map depicting the landcover of the Natchez Trace Parkway. The mapping output was created using mosaiced color infrared aerial photography of the Parkway. The map shows the distribution of 18 landcover classes based on the National Vegetation Classification Standard. Ground-based vegetation classification was provided by the National Park Service (NPS). The mapping output delineates grasses, road-developed areas, scrub-shrub, shrubland, plantation, water bodies, areas of white oak, oak, pine-oak, pine-cedar, pine-sweetgum, sweetgum (including sweetgum-oak), scattered trees, swamp forest, irregular classes, aquatic vegetation, invasive species, canopy gaps, and clouds.
Total mapped area includes a 100 m buffer outside the park boundary. 235 digital orthophoto quarter quadrangles (DOQQs) were required to cover the entire 715 km long Parkway. For ease of use, the DOQQs were grouped into 11 mosaics, each covering a section of the Parkway. At the request of the NPS, each mosaic was divided into ten tiles to allow for efficient loading on less robust computers.
In the United States, the federal government manages approximately 28% of the land in the United States. Most federal lands are west of the Mississippi River, where almost half of the land by area is managed by the federal government. Federal lands include 193 million acres managed by the US Forest Service in 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service, and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources. The agencies included in this layer are:Bureau of Land ManagementDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States federal lands managed by six federal agenciesGeographic Extent: 50 United States and the District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Data Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DOD, USFS, USFWS, NPS, PADUS 3.0Publication Date: Various - Esri compiled and published this layer in May 2025. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
description: This map was produced by the Division of Realty to depict landownership at Upper Mississippi River National Wildlife and Fish Refuge. It was generated from rectified aerial photography, cadastral surveys and recorded documents.; abstract: This map was produced by the Division of Realty to depict landownership at Upper Mississippi River National Wildlife and Fish Refuge. It was generated from rectified aerial photography, cadastral surveys and recorded documents.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
As part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program study of the Mississippi Alluvial Plain (MAP), a shapefile representing seven generalized regions of the MAP extent as defined by Painter and Westerman (2018) was compiled. The generalized regions provide a framework for analysis, visualization, and regional comparisons of local data within the MAP. Regions north of the Red River were based on those described by Ackerman (1996). The Grand Prairie region includes the area north and east of the Arkansas River and south and west of the White River within the MAP. The Cache region includes the area north and east of the White River and the area generally west of Crowley’s Ridge, which lies outside of the MAP extent (Painter and Westerman, 2018), bisects the northern part of the MAP, and has elevations 100 to 250 feet (ft) higher than the MAP (Ackerman, 1996). The Delta region, which is roughly equivalent to the Yazoo River drainage, lies predomin ...
description: This map was produced by the Division of Realty to depict landownership at Middle Mississippi River National Wildlife Refuge. It was generated from rectified aerial photography, cadastral surveys and recorded documents.; abstract: This map was produced by the Division of Realty to depict landownership at Middle Mississippi River National Wildlife Refuge. It was generated from rectified aerial photography, cadastral surveys and recorded documents.
Product: These are Digital Elevation Model (DEM) data for Mississippi NRCS FY16 Lidar as part of the required deliverables for Mississippi NRCS FY16 Lidar project. Class 2 (ground) lidar points in conjunction with the hydro breaklines and bridge breaklines were used to create a 1 meter hydro-flattened Raster DEM. Geographic Extent: AOI is located in Mississippi over Warren, Hinds, Claibo...
This map shows the structural configuration on the top of the Cotton Valley Group in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the kelly bushing elevation or the ground surface elevation) and the reported depth of the Cotton Valley Group. This resulted in 10,687 wells for which locations were available. After deleting the wells with obvious data problems, a total of 10,504 wells were used to generate the map. The data are provided as both lines and polygons, and the proprietary wells that penetrate the top of the Cotton Valley Group are graphically displayed as quarter-mile cells. The well information was initially retrieved from the IHS Energy Group, PI/Dwights PLUS Well Data on CD-ROM, which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary PI/Dwights PLUS Well Data. No proprietary data are displayed or included in the cell maps. The data from PI/Dwights PLUS Well Data are current as of April 2001.
This map shows the approximate extent of overbank flooding in the Lower Mississippi River prior to extensive construction of levees. It was digitized from this map: https://fws.maps.arcgis.com/home/item.html?id=6941d5d2a1a84d05b771ef854a192d40 The original source map is derived from an online source (https://www.digitalcommonwealth.org/search/commonwealth:7h14b0450). Map of the alluvial valley of the Mississippi River from the head of St. Francis Basin to the Gulf of Mexico, showing lands subject to overflow, location of levees and trans-alluvial profiles. The map shows the landscape configuration and the approximate extent of overbank flooding before extensive construction of the levees in the early 1900s. The map was georectified using ERDAS Imagine and contemporary data sources. Edited (to correct position of panels) and georeferenced by Yvonne Allen (USFWS) to geographic NAD1927 using ArcGIS , 3rd order polynomial and 80 ground control points using lat lon grid.Online repo: https://www.sciencebase.gov/catalog/item/58f66491e4b0bd52222f7821
Vector polygon map data of property parcels from Coahoma County, Mississippi containing 15,835 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.