The Southeastern Ecological Framework Project is a GIS-based analysis to identify ecologically significant areas and connectivity in the southeast region of the US. The states included in the project are Florida, Georgia, Alabama, Mississippi, South Carolina, North Carolina, Tennessee and Kentucky
The project began in October 1998 and was completed in December 2001 by the University of Florida GeoPlan Center and sponsored by the US Environmental Protection Agency Region 4. Region 4 Planning & Analysis Branch continues to use this data to facilitate EPA programs and to work with state and federal agencies and local groups to make sound conservation decisions. Efforts to apply this methodology to other EPA Regions is being considered.
The Southeastern Ecological Framework Final Report is available for download as a .PDF. This document requires Adobe Acrobat Reader 5.0 software for viewing, which can be downloaded for free from the Adobe website.
Project Goals and Objectives:
identify primary ecological areas that are protected by some type of conservation or ecosystem management program,
identify a green infrastructure network that connects these primary ecological areas,
identify the important ecological characteristics of the ecological areas and connecting green infrastructure,
develop an understanding of the spatial scale issues involved in analyzing the ecological connectivity at local, state and regional scales, and
develop protocol for dissemination of the information.
This analysis was conducted using landscape ecology principles and Geographic Information Systems (GIS) tools. The product(s) of this study can be used by local, state and federal agencies in developing a regional atlas of environmental issues and conflicts and threats to the natural ecosystems caused by human environmental impacts. State, local and private entities can utilize the information to address various environmental resource allocation issues.
[Summary provided by the University of Florida]
Reason for SelectionThe Southeast United States is a global biodiversity hotspot that supports many rare and endemic reptile and amphibian species (Barrett et al. 2014, EPA 2014). These species are experiencing dramatic population declines driven by habitat loss, pollution, invasive species, and disease (Sutherland and deMaynadier 2012, EPA 2014, CI et al. 2004). Amphibians provide an early signal of environmental change because they rely on both terrestrial and aquatic habitats, are sensitive to pollutants, and are often narrowly adapted to specific geographic areas and climatic conditions. As a result, they serve as effective indicators of ecosystem health (CI et al. 2004, EPA 2014). Their association with particular microhabitats and microclimates makes amphibians vulnerable to climate change, and Southeast amphibians are predicted to lose significant amounts of climatically suitable habitat in the future (Barrett et al. 2014). PARCAs also represent the condition and arrangement of embedded isolated wetlands. Many amphibians breed in temporary (i.e., ephemeral) wetlands surrounded by upland habitat, which are not well-captured by existing indicators in the Blueprint (Erwin et al. 2016).Input DataSoutheast Blueprint 2024 extent2023 U.S. Census TIGER/Line state boundaries, accessed 4-5-2024: download the data
Southeast Priority Amphibian and Reptile Conservation Areas (PARCAs)
PARCAs for all Southeast states except for Mississippi, Virginia, and Kentucky, shared by José Garrido with the Amphibian and Reptile Conservancy (ARC) on 3-5-2024PARCAs for Mississippi, shared by Luis Tirado with ARC on 4-26-2024 (these PARCAs were identified more recently and were not yet captured in ARC’s Southeast PARCAs dataset)South Atlantic PARCAs: Neuse Tar River PARCA (this PARCA was identified through a project funded by the South Atlantic Landscape Conservation Cooperative and is not yet captured in ARC’s Southeast PARCAs dataset; we added this PARCA after consultation with ARC staff) To view a map depicting some of the PARCAs provided, scroll to the bottom of the work page of the ARC website under the heading “PARCAs Nationwide”; to access the data, email info@ARCProtects.org. PARCA is a nonregulatory designation established to raise public awareness and spark voluntary action by landowners and conservation partners to benefit amphibians and/or reptiles. Areas are nominated using scientific criteria and expert review, drawing on the concepts of species rarity, richness, regional responsibility, and landscape integrity. Modeled in part after the Important Bird Areas program developed by BirdLife International, PARCAs are intended to be nationally coordinated but locally implemented at state or regional scales. Importantly, PARCAs are not designed to compete with existing landscape biodiversity initiatives, but to complement them, providing an additional spatially explicit layer for conservation consideration.
PARCAs are intended to be established in areas:
capable of supporting viable amphibian and reptile populations, occupied by rare, imperiled, or at-risk species, and rich in species diversity or endemism. For example, species used in identifying the PARCAs in the Southeast include: alligator snapping turtle, Barbour’s map turtle, one-toed amphiuma, Savannah slimy salamander, Mabee’s salamander, dwarf waterdog, Neuse river waterdog, chicken turtle, spotted turtle, tiger salamander, rainbow snake, lesser siren, gopher frog, Eastern diamondback rattlesnake, Southern hognose snake, pine snake, flatwoods salamander, gopher tortoise, striped newt, pine barrens tree frog, indigo snake, and others.
There are four major implementation steps:
Regional PARC task teams or state experts can use the criteria and modify them when appropriate to designate potential PARCAs in their area of interest. Following the identification of all potential PARCAs, the group then reduces these to a final set of exceptional sites that best represent the area of interest. Experts and stakeholders in the area of interest collaborate to produce a map that identifies these peer-reviewed PARCAs. Final PARCAs are shared with the community to encourage the implementation of voluntary habitat management and conservation efforts. PARCA boundaries can be updated as needed. Mapping Steps Merge the three PARCA polygon datasets and convert from vector to a 30 m pixel raster using the ArcPy Feature to Raster function. Give all PARCAs a value of 1.Add zero values to represent the extent of the source data and to make it perform better in online tools. Convert to raster the TIGER/Line state boundaries for all SEAFWA states except for Virginia and Kentucky and assign them a value of 0. We excluded Virginia and Kentucky because PARCAs have not yet been identified for these states. Use the Cell Statistics “MAX” function to combine the two above rasters.As a final step, clip to the spatial extent of Southeast Blueprint 2024. Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code.Final indicator valuesIndicator values are assigned as follows:1 = Priority Amphibian and Reptile Conservation Area (PARCA) 0 = Not a PARCA (excluding Kentucky and Virginia)Known IssuesThe mapping of this indicator is relatively coarse and doesn’t always capture differences in pixel-level quality in the outer edge of PARCAs. For example, some PARCAs include developed areas.This indicator is binary and doesn’t capture the full continuum of value across the Southeast.The methods of combining expert knowledge and data in this indicator may have caused some poorly known and/or under-surveyed areas to be scored too low.This indicator underprioritizes important reptile and amphibian habitat in Kentucky and Virginia because PARCAs have not yet been identified for these areas. ARC is working to expand PARCAs to more states in the future.Because of the state-by-state PARCA development and review process, sometimes PARCA boundaries stop at the state line, though suitable habitat for reptiles and amphibians does not always follow jurisdictional boundaries.This indicator excludes “protected” PARCAs maintained by ARC that are too small and spatially explicit to share publicly due to concerns about poaching. As a result, it underprioritizes some important reptile and amphibian habitat. However, these areas are, with a few exceptions in northwest Arkansas and Tennessee, generally well-represented in the Blueprint due to their value for other indicators.This indicator contains small gaps 1-2 pixels wide between some adjoining PARCAs that likely should be continuous, often on either side of a state line. These are represented in the source data as separate polygons with tiny gaps between them, and these translate into gaps in the resulting indicator raster. This results from the PARCA digitizing process and does not reflect meaningful differences in priority.Disclaimer: Comparing with Older Indicator VersionsThere are numerous problems with using Southeast Blueprint indicators for change analysis. Please consult Blueprint staff if you would like to do this (email hilary_morris@fws.gov).Literature CitedAmphibian and Reptile Conservancy. Priority Amphibian and Reptile Conservation Areas (PARCAs). Revised February 7, 2024. Apodaca, Joseph. 2013. Determining Priority Amphibian and Reptile Conservation Areas (PARCAs) in the South Atlantic landscape, and assessing their efficacy for cross-taxa conservation: Geographic Dataset. [https://www.sciencebase.gov/catalog/item/59e105a1e4b05fe04cd000df]. Barrett, Kyle, Nathan P. Nibbelink, John C. Maerz; Identifying Priority Species and Conservation Opportunities Under Future Climate Scenarios: Amphibians in a Biodiversity Hotspot. Journal of Fish and Wildlife Management 1 December 2014; 5 (2): 282–297. [https://doi.org/10.3996/022014-JFWM-015]. Conservation International, International Union for the Conservation of Nature, NatureServe. 2004. Global Amphibian Assessment Factsheet. [https://www.natureserve.org/sites/default/files/amphibian_fact_sheet.pdf]. Environmental Protection Agency. 2014. Mean Amphibian Species Richness: Southeast. EnviroAtlas Factsheet. [https://enviroatlas.epa.gov/enviroatlas/DataFactSheets/pdf/ESN/MeanAmphibianSpeciesRichness.pdf]. Erwin, K. J., Chandler, H. C., Palis, J. G., Gorman, T. A., & Haas, C. A. (2016). Herpetofaunal Communities in Ephemeral Wetlands Embedded within Longleaf Pine Flatwoods of the Gulf Coastal Plain. Southeastern Naturalist, 15(3), 431–447. [https://www.jstor.org/stable/26454722]. Sutherland and deMaynadier. 2012. Model Criteria and Implementation Guidance for a Priority Amphibian and Reptile Conservation Area (PARCA) System in the USA. Partners in Amphibian and Reptile Conservation, Technical Publication PARCA-1. 28 pp. [https://parcplace.org/wp-content/uploads/2017/08/PARCA_System_Criteria_and_Implementation_Guidance_FINAL.pdf]. U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch. TIGER/Line Shapefile, 2023, U.S. Current State and Equivalent National. 2023. [https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html].
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Mississippi River is North America’s largest river, flowing over 2,300 miles through America’s heartland to the Gulf of Mexico. The watershed not only provides drinking water, food, industry, and recreation for millions of people, it also hosts a globally significant migratory flyway and home for over 325 bird species. Leading the world in agricultural production, a healthy agricultural sector in the Mississippi River Basin is essential for maintaining the nation’s and the world’s food and fiber supply. USDA Conservation Effects Assessment Project (CEAP) cropland models show that conservation on cropland throughout the entire Mississippi River Basin has reduced nitrogen and sediment loading to the Gulf of Mexico by 28 percent and 45 percent, respectively, over what would be lost without conservation systems in place. With the CCA designation, USDA will build on existing strong partnerships in the basin to accelerate conservation in the 13-state area to continue to reduce nutrient and sediment loading to local and regional water bodies and to improve efficiency in using water supplies, particularly in the southern states. The CCA boundary was identified to harness the partnerships and momentum already established by NRCS’s Mississippi River Basin Healthy Watersheds Initiative (MRBI). With more than 600 partners engaged throughout the initiative area, MRBI has treated over 800,000 acres of agricultural land with systems of practices intended to avoid, control, and trap nutrient and sediment run-off and improve irrigation efficiency. This dataset includes a printer-friendly CCA map and shapefiles for GIS. Resources in this dataset:Resource Title: Mississippi River Basin. File Name: Web Page, url: https://www.nrcs.usda.gov/programs-initiatives/rcpp-regional-conservation-partnership-program/critical-conservation-areas Information about the project and links to a printer-friendly CCA map (PDF, 1.2MB) and shapefiles for GIS (ZIP, 218KB).
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
The National Land Cover Database 2001 land cover layer was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. This landcover map and all documents pertaining to it are considered "provisional" until a formal accuracy assessment can be conducted. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer et al. (2004) and http://www.mrlc.gov/mrlc2k.asp.The NLCD 2001 is created by partitioning the U.S. into mapping zones. A total of 66 mapping zones were delineated within the conterminous U.S. based on ecoregion and geographical characteristics, edge matching features and the size requirement of Landsat mosaics. Mapping zone 37B encompasses whole or portions of several states, including the states of Texas, Louisiana, and Mississippi. Questions about the NLCD mapping zone 37B can be directed to the NLCD 2001 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.
The mission of the USGS Gap Analysis Program (GAP) is providing state, regional and national assessments of the conservation status of native vertebrate species and natural land cover types and facilitating the application of this information to land management activities. The PAD-US geodatabase is required to organize and assess the management status (i.e. apply GAP Status Codes) of elements of biodiversity protection. The goal of GAP is to 'keep common species common' by identifying species and plant communities not adequately represented in existing conservation lands. Common species are those not currently threatened with extinction. By identifying their habitats, gap analysis gives land managers and policy makers the information they need to make better-informed decisions when identifying priority areas for conservation. In cooperation with UNEP-World Conservation Monitoring Centre, GAP ensures PAD-US also supports global analyses to inform policy decisions by maintaining World Database for Protected Areas (WDPA) Site Codes and data for International Union for the Conservation of Nature (IUCN) categorized protected areas in the United States. GAP seeks to increase the efficiency and accuracy of PAD-US updates by leveraging resources in protected areas data aggregation and maintenance as described in "A Map of the Future", published following the PAD-US Design Project (July, 2009). While PAD-US was originally developed to support the GAP Mission stated above, the dataset is robust and has been expanded to support the conservation, recreation and public health communities as well. Additional applications become apparent over time.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, is composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats. The Watershed Boundary Dataset is being developed under the leadership of the Subcommittee on Spatial Water Data, which is part of the Advisory Committee on Water Information (ACWI) and the Federal Geographic Data Committee (FGDC). The USDA Natural Resources Conservation Service (NRCS), along with many other federal agencies and national associations, have representatives on the Subcommittee on Spatial Water Data. As watershed boundary geographic information systems (GIS) coverages are completed, statewide and national data layers will be made available via the Geospatial Data Gateway to everyone, including federal, state, local government agencies, researchers, private companies, utilities, environmental groups, and concerned citizens. The database will assist in planning and describing water use and related land use activities. Resources in this dataset:Resource Title: Watershed Boundary Dataset (WBD). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/dataset/?cid=nrcs143_021630 Web site for the Watershed Boundary Dataset (WBD), including links to:
Review Data Availability (Status Maps)
Obtain Data by State, County, or Other Area
Obtain Seamless National Data offsite link image
Geospatial Data Tools
National Technical and State Coordinators
Information about WBD dataset
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
FOR non-AGOL ACCOUNT HOLDERS, DOWNLOAD THIS GEOSPATIAL DATA HERE: https://gis-fws.opendata.arcgis.com/search?tags=lmvjvPolygon shapefile of the various state game agency managed lands (typically known as WMAs or Wildlife Management Areas) of the West Gulf Coastal Plain & Ouachitas ecological region, as compiled by the Lower Mississippi Valley Joint Venture partnership. Data was pulled from PAD US database aggregated by USGS and selected by location for inclusion in the region and includes data from Mississippi, Arkansas, Oklahoma and Texas. Units are considered areas that are actively managed for game and wildlife species.The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme ( https://communities.geoplatform.gov/ngda-cadastre/ ). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all open space public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, permanent and long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of U.S. public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using thirty-six attributes and five separate feature classes representing the U.S. protected areas network: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. An additional Combined feature class includes the full PAD-US inventory to support data management, queries, web mapping services, and analyses. The Feature Class (FeatClass) field in the Combined layer allows users to extract data types as needed. A Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) facilitates the extraction of authoritative federal data provided or recommended by managing agencies from the Combined PAD-US inventory. This PAD-US Version 3.0 dataset includes a variety of updates from the previous Version 2.1 dataset (USGS, 2020, https://doi.org/10.5066/P92QM3NT ), achieving goals to: 1) Annually update and improve spatial data representing the federal estate for PAD-US applications; 2) Update state and local lands data as state data-steward and PAD-US Team resources allow; and 3) Automate data translation efforts to increase PAD-US update efficiency. The following list summarizes the integration of "best available" spatial data to ensure public lands and other protected areas from all jurisdictions are represented in the PAD-US (other data were transferred from PAD-US 2.1). Federal updates - The USGS remains committed to updating federal fee owned lands data and major designation changes in annual PAD-US updates, where authoritative data provided directly by managing agencies are available or alternative data sources are recommended. The following is a list of updates or revisions associated with the federal estate: 1) Major update of the Federal estate (fee ownership parcels, easement interest, and management designations where available), including authoritative data from 8 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census Bureau), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), and National Oceanic and Atmospheric Administration (NOAA). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/ ). 2) Improved the representation (boundaries and attributes) of the National Park Service, U.S. Forest Service, Bureau of Land Management, and U.S. Fish and Wildlife Service lands, in collaboration with agency data-stewards, in response to feedback from the PAD-US Team and stakeholders. 3) Added a Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) to the PAD-US 3.0 geodatabase to facilitate the extraction (by Data Provider, Dataset Name, and/or Aggregator Source) of authoritative data provided directly (or recommended) by federal managing agencies from the full PAD-US inventory. A summary of the number of records (Frequency) and calculated GIS Acres (vs Documented Acres) associated with features provided by each Aggregator Source is included; however, the number of records may vary from source data as the "State Name" standard is applied to national files. The Feature Class (FeatClass) field in the table and geodatabase describe the data type to highlight overlapping features in the full inventory (e.g. Designation features often overlap Fee features) and to assist users in building queries for applications as needed. 4) Scripted the translation of the Department of Defense, Census Bureau, and Natural Resource Conservation Service source data into the PAD-US format to increase update efficiency. 5) Revised conservation measures (GAP Status Code, IUCN Category) to more accurately represent protected and conserved areas. For example, Fish and Wildlife Service (FWS) Waterfowl Production Area Wetland Easements changed from GAP Status Code 2 to 4 as spatial data currently represents the complete parcel (about 10.54 million acres primarily in North Dakota and South Dakota). Only aliquot parts of these parcels are documented under wetland easement (1.64 million acres). These acreages are provided by the U.S. Fish and Wildlife Service and are referenced in the PAD-US geodatabase Easement feature class 'Comments' field. State updates - The USGS is committed to building capacity in the state data-steward network and the PAD-US Team to increase the frequency of state land updates, as resources allow. The USGS supported efforts to significantly increase state inventory completeness with the integration of local parks data in the PAD-US 2.1, and developed a state-to-PAD-US data translation script during PAD-US 3.0 development to pilot in future updates. Additional efforts are in progress to support the technical and organizational strategies needed to increase the frequency of state updates. The PAD-US 3.0 included major updates to the following three states: 1) California - added or updated state, regional, local, and nonprofit lands data from the California Protected Areas Database (CPAD), managed by GreenInfo Network, and integrated conservation and recreation measure changes following review coordinated by the data-steward with state managing agencies. Developed a data translation Python script (see Process Step 2 Source Data Documentation) in collaboration with the data-steward to increase the accuracy and efficiency of future PAD-US updates from CPAD. 2) Virginia - added or updated state, local, and nonprofit protected areas data (and removed legacy data) from the Virginia Conservation Lands Database, provided by the Virginia Department of Conservation and Recreation's Natural Heritage Program, and integrated conservation and recreation measure changes following review by the data-steward. 3) West Virginia - added or updated state, local, and nonprofit protected areas data provided by the West Virginia University, GIS Technical Center. For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the PAD-US Data Manual available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual . A version history of PAD-US updates is summarized below (See https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-history for more information): 1) First posted - April 2009 (Version 1.0 - available from the PAD-US: Team pad-us@usgs.gov). 2) Revised - May 2010 (Version 1.1 - available from the PAD-US: Team pad-us@usgs.gov). 3) Revised - April 2011 (Version 1.2 - available from the PAD-US: Team pad-us@usgs.gov). 4) Revised - November 2012 (Version 1.3) https://doi.org/10.5066/F79Z92XD 5) Revised - May 2016 (Version 1.4) https://doi.org/10.5066/F7G73BSZ 6) Revised - September 2018 (Version 2.0) https://doi.org/10.5066/P955KPLE 7) Revised - September 2020 (Version 2.1) https://doi.org/10.5066/P92QM3NT 8) Revised - January 2022 (Version 3.0) https://doi.org/10.5066/P9Q9LQ4B Comparing protected area trends between PAD-US versions is not recommended without consultation with USGS as many changes reflect improvements to agency and organization GIS systems, or conservation and recreation measure classification, rather than actual changes in protected area acquisition on the ground. These lands are commonly known as Wildlife Management Areas (WMAs) but that nomenclature varies by state.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A joint venture is a self-directed partnership of agencies, organizations, corporations, tribes, or individuals that has formally accepted the responsibility of implementing national or international bird conservation plans within a specific geographic area or for a specific taxonomic group, and has received general acceptance in the bird conservation community for such responsibility. Federal, state, tribal, or private parties may suggest the development of new joint ventures at any time. The initiating agency or organization will coordinate with potential partners to produce a scoping document or concept plan. circulate the document for review and comment by agencies, organizations, and individuals. Based on this review, a decision as to whether or not to form a management board and develop an implementation plan will be made. submit a draft implementation plan to the Division of Bird Habitat Conservation (Division), which will coordinate the review of the plan within the Service, with the appropriate Flyway Councils (Atlantic, Mississippi, Central, and Pacific), with the national or international boards that oversee the various bird conservation initiatives (North American Waterfowl Management Plan, U.S. Shorebird Conservation Plan, North American Waterbird Conservation Plan, and Partners in Flight), and other interested parties. Based on this review, the Division will determine whether or not a recommendation for Service support of the proposed joint venture should be made to the Director. This revision shows recent (12.15.21) Central Hardwood JV and Upper Mississippi/Great Lakes JV boundary changes.USFWS Migratory Bird Program: https://www.fws.gov/birds/index.phpFor a direct link to the official Enterprise Geospatial dataset and metadata: https://ecos.fws.gov/ServCat/Reference/Profile/143047
This collection of conservation areas consists of the floodplain of the combined streams of the Iowa River and the Cedar River. The study area begins just southeast of Wapello, IA, and continues southeast until the Horseshoe Bend Division, Port Louisa NWR. The area is currently managed to maintain meadow or grassland habitat which requires intensive management due to vegetative succession. In addition, this floodplain area contains a high proportion of managed lands and private lands in the Wetland Reserve Program and is a high priority area for cooperative conservation actions. This project provides a late-summer baseline vegetation inventory to assess future management actions in an adaptive process. Changes in levees, in addition to increased water flows and flood events due to climate change and land use practices, make restoration of floodplain processes more complex. Predictive models could help determine more efficient and effective restoration and management techniques. Successful GIS tools developed for this project would be applicable to other floodplain refuges and conservation areas.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Southeastern Ecological Framework Project is a GIS-based analysis to identify ecologically significant areas and connectivity in the southeast region of the US. The states included in the project are Florida, Georgia, Alabama, Mississippi, South Carolina, North Carolina, Tennessee and Kentucky
The project began in October 1998 and was completed in December 2001 by the University of Florida GeoPlan Center and sponsored by the US Environmental Protection Agency Region 4. Region 4 Planning & Analysis Branch continues to use this data to facilitate EPA programs and to work with state and federal agencies and local groups to make sound conservation decisions. Efforts to apply this methodology to other EPA Regions is being considered.
The Southeastern Ecological Framework Final Report is available for download as a .PDF. This document requires Adobe Acrobat Reader 5.0 software for viewing, which can be downloaded for free from the Adobe website.
Project Goals and Objectives:
identify primary ecological areas that are protected by some type of conservation or ecosystem management program,
identify a green infrastructure network that connects these primary ecological areas,
identify the important ecological characteristics of the ecological areas and connecting green infrastructure,
develop an understanding of the spatial scale issues involved in analyzing the ecological connectivity at local, state and regional scales, and
develop protocol for dissemination of the information.
This analysis was conducted using landscape ecology principles and Geographic Information Systems (GIS) tools. The product(s) of this study can be used by local, state and federal agencies in developing a regional atlas of environmental issues and conflicts and threats to the natural ecosystems caused by human environmental impacts. State, local and private entities can utilize the information to address various environmental resource allocation issues.
[Summary provided by the University of Florida]