3 datasets found
  1. Results of assessment of stationarity of the coefficients of the predictors...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi (2023). Results of assessment of stationarity of the coefficients of the predictors of the COVID-19 risks in the Greater St. Louis Area, Missouri. [Dataset]. http://doi.org/10.1371/journal.pone.0274899.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    St. Louis MO-IL, Metropolitan Statistical Area, Missouri
    Description

    Results of assessment of stationarity of the coefficients of the predictors of the COVID-19 risks in the Greater St. Louis Area, Missouri.

  2. f

    Univariable associations between ZCTA-level COVID-19 risk and potential...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi (2023). Univariable associations between ZCTA-level COVID-19 risk and potential predictors in the Greater St. Louis Area, Missouri (USA). [Dataset]. http://doi.org/10.1371/journal.pone.0274899.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States, St. Louis MO-IL, Metropolitan Statistical Area, Missouri
    Description

    Univariable associations between ZCTA-level COVID-19 risk and potential predictors in the Greater St. Louis Area, Missouri (USA).

  3. Final global negative binomial model showing significant predictors of...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi (2023). Final global negative binomial model showing significant predictors of COVID-19 risk in the Greater St. Louis Area, Missouri (USA). [Dataset]. http://doi.org/10.1371/journal.pone.0274899.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    St. Louis MO-IL, Metropolitan Statistical Area, Missouri, United States
    Description

    Final global negative binomial model showing significant predictors of COVID-19 risk in the Greater St. Louis Area, Missouri (USA).

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi (2023). Results of assessment of stationarity of the coefficients of the predictors of the COVID-19 risks in the Greater St. Louis Area, Missouri. [Dataset]. http://doi.org/10.1371/journal.pone.0274899.t004
Organization logo

Results of assessment of stationarity of the coefficients of the predictors of the COVID-19 risks in the Greater St. Louis Area, Missouri.

Related Article
Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
xlsAvailable download formats
Dataset updated
Jun 13, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Praachi Das; Morganne Igoe; Suzanne Lenhart; Lan Luong; Cristina Lanzas; Alun L. Lloyd; Agricola Odoi
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
St. Louis MO-IL, Metropolitan Statistical Area, Missouri
Description

Results of assessment of stationarity of the coefficients of the predictors of the COVID-19 risks in the Greater St. Louis Area, Missouri.

Search
Clear search
Close search
Google apps
Main menu