71 datasets found
  1. a

    MIT Thematic Basemap

    • maps-fisgis.hub.arcgis.com
    Updated Nov 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Facility Information Systems (2021). MIT Thematic Basemap [Dataset]. https://maps-fisgis.hub.arcgis.com/maps/7ff152d712184445b6e8d0a65c594081
    Explore at:
    Dataset updated
    Nov 3, 2021
    Dataset authored and provided by
    Facility Information Systems
    Area covered
    Description

    MIT light grey basemap used for thematic mapping.

  2. Hochwasserrisiko Brandenburg hoch

    • opendataportal-esri-konferenz-esri-training.opendata.arcgis.com
    • anrgeodata.vermont.gov
    • +3more
    Updated Dec 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2019). Hochwasserrisiko Brandenburg hoch [Dataset]. https://opendataportal-esri-konferenz-esri-training.opendata.arcgis.com/datasets/esri-de-content::hochwasserrisiko-brandenburg-hoch
    Explore at:
    Dataset updated
    Dec 17, 2019
    Dataset provided by
    ESRIhttp://esri.com/
    Authors
    Esri Deutschland
    Area covered
    Description

    Die Hochwasserrisikogebiete der Hochwasserszenarien HQ10, HQ20 (nur Elbe-Hauptschlauch), HQ100 und HQextrem (Berechnung des HQ200 ohne Wirksamkeit von Hochwasserschutzeinrichtungen) wurden im Land Brandenburg unterschiedlich ermittelt. Zum Einsatz kamen in der Regel hydronumerische Modelle (gekoppelte 1D/2D Modelle, 2D Modelle) mit stationärem Ansatz. Ausnahmen bilden die Hochwasserrisikogebiete an den Bundeswasserstraßen Elbe/Prignitz und Havel. Diese wurden mittels einer GIS-technischen Ausspiegelung auf der Grundlage von Pegelzeitreihen, Wasserstandslängsschnitten, der Stationierungen der Bundeswasserstraßen und dem DGM mit Deichen ermittelt.Herkunft:Gewässernetz Brandenburg (Datenbestand LfU) Vermessung von Gewässern, Hochwasserschutzanlagen und anderen wasserwirtschaftlichen Anlagen (Datenbestand LfU) Hydrologische Daten der Fließgewässer (Datenbestand LfU)Datenquellen:- DGM1 - Orthofotos (DOP40) - Gewässernetz Brandenburg (Datenbestand LfU) - Vermessung von Gewässern, Hochwasserschutzanlagen und anderen wasserwirtschaftlichen Anlagen (Datenbestand LfU) - Hydrologische Daten der Fließgewässer (Datenbestand LfU)Herstellungsprozess:Nach Ermittlung der Hochwasserrisikogebiete wurden die Anschlaglinien und -polygone aller Hochwasserrisikogebiete mit dem PEAK-Algorithmus (in ESRI-ArcGIS 9.3.1) und einer Toleranz von 5 m geglättet. Aus Gründen der Datenverarbeitung mussten im Anschluss mit Hilfe des Douglas-Algorithmus (in ESRI-ArcGIS 10.1) die Stützpunkte reduziert werden. Die maximale Toleranz bei der Nutzung des Douglas-Algorithmus beträgt 0,1 m. Die Geometrie und Topologie des Datensatzes bleiben innerhalb dieser Toleranz erhalten. Es werden alle Stützpunkte, deren Entfernung eine Abweichung unterhalb der Generalisierungs-Toleranz verursacht, gelöscht. Die Position der verbleibenden Stützpunkte wird nicht verändert. Für die leichtere Handhabung wurden die gemeldeten Daten nach Hochwasserszenarien getrennt und mit Textattributen versehen. Weiterhin wurden die größten Polygone an Engstellen geteilt, um die Nutzung im Desktop GIS zu verbessern.Die Daten Stammen vom Geobasis Brandenburg und wurden heruntergeladen, umprojiziert und anschließend veröffentlicht.

  3. ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating...

    • zenodo.org
    • data.niaid.nih.gov
    bin, zip
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Gillreath-Brown; Andrew Gillreath-Brown; Lisa Nagaoka; Lisa Nagaoka; Steve Wolverton; Steve Wolverton (2024). ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al. (2019) [Dataset]. http://doi.org/10.5281/zenodo.2572018
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Gillreath-Brown; Andrew Gillreath-Brown; Lisa Nagaoka; Lisa Nagaoka; Steve Wolverton; Steve Wolverton
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)

    **When using the GIS data included in these map packages, please cite all of the following:

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018

    OVERVIEW OF CONTENTS

    This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:

    • Raw DEM and Soils data
      • Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
        • DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
        • DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
      • Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
        • Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
        • Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
    • ArcGIS Map Packages
      • Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
      • Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
      • Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
      • Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).

    For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."

    LICENSES

    Code: MIT year: 2019
    Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton

    CONTACT

    Andrew Gillreath-Brown, PhD Candidate, RPA
    Department of Anthropology, Washington State University
    andrew.brown1234@gmail.com – Email
    andrewgillreathbrown.wordpress.com – Web

  4. a

    MIT Restroom Centroids

    • maps-fisgis.hub.arcgis.com
    Updated Mar 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Facility Information Systems (2023). MIT Restroom Centroids [Dataset]. https://maps-fisgis.hub.arcgis.com/maps/fisgis::mit-restroom-centroids
    Explore at:
    Dataset updated
    Mar 27, 2023
    Dataset authored and provided by
    Facility Information Systems
    Area covered
    Description

    MIT Restroom Centroids

  5. e

    MOLISEDB.GIS.MO_PRA04G_Aree_isovalue_PM10_Vec

    • data.europa.eu
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MOLISEDB.GIS.MO_PRA04G_Aree_isovalue_PM10_Vec [Dataset]. https://data.europa.eu/data/datasets/r_molise-5ef273e7-aa1b-4e02-8e80-46500cb534bf-?locale=no
    Explore at:
    Description

    Polygonale Klasse, die die Isowertbereiche im Zusammenhang mit Feinstaub (PM10) auf regionaler Skala anzeigt. Daten über die gesamte Molise-Region.

  6. a

    MIT Restroom Polygons

    • maps-fisgis.hub.arcgis.com
    Updated Mar 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Facility Information Systems (2023). MIT Restroom Polygons [Dataset]. https://maps-fisgis.hub.arcgis.com/datasets/mit-restroom-polygons
    Explore at:
    Dataset updated
    Mar 27, 2023
    Dataset authored and provided by
    Facility Information Systems
    Area covered
    Description

    A snapshot of the Restroom Polygons exported from MIT space accounting

  7. Ladesäulen in Deutschland

    • opendata.coworkingmap.de
    • opendataportal-esri-konferenz-esri-training.opendata.arcgis.com
    • +7more
    Updated Aug 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2021). Ladesäulen in Deutschland [Dataset]. https://opendata.coworkingmap.de/maps/bc3c97f73d6b4be4921be8560fbc325a_0/explore
    Explore at:
    Dataset updated
    Aug 29, 2021
    Dataset provided by
    ESRIhttp://esri.com/
    Authors
    Esri Deutschland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Ladesäulen oder Ladestationen dienen dem Laden von Elektrofahrzeugen. Sie sind konventionellen Zapfsäulen nachempfunden und bieten in der Regel verschiedene Kabelverbindungen. Dieser Dienst enthält die Ladesäulen, die der Ladesäulenverordnung (LSV) genügen. Die Liste beinhaltet also die Ladeeinrichtungen aller Betreiberinnen und Betreiber, die das Anzeigeverfahren der Bundesnetzagentur vollständig abgeschlossen und einer Veröffentlichung im Internet zugestimmt haben. Die Zahl der öffentlich zugänglichen Ladeeinrichtungen in Deutschland ist daher größer als hier dargestellt.Die Daten stammen von der Seite der Bundesnetzagentur (Stand 01.12.2024) und wurden mit ArcGIS Pro auf WGS84 Web Mercator umprojiziert. Die Punkte wurden mit den Koordinaten aus der BnA-Tabelle erstellt. In manchen Fällen stimmen die Koordinaten nicht mit der Adresse überein.Neben den Lagekoordinaten sind Informationen zum Betreiber, der Inbetriebnahme, der Anschlussleistung in Kilowatt, der Art der Ladeeinrichtung, der Anzahl der Ladepunkte sowie der Steckertypen mit einer Angabe zur Kilowattleistung enthalten.Bitte beachten Sie die unten aufgeführten Nutzungsbestimmungen der Bundesnetzagentur.

  8. m

    MBTA Bus Arrival Departure Times 2018

    • gis.data.mass.gov
    • mbta-massdot.opendata.arcgis.com
    • +2more
    Updated Sep 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts geoDOT (2019). MBTA Bus Arrival Departure Times 2018 [Dataset]. https://gis.data.mass.gov/datasets/d685ba39d9a54d908f49a2a762a9eb47
    Explore at:
    Dataset updated
    Sep 27, 2019
    Dataset authored and provided by
    Massachusetts geoDOT
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This file contains the arrival and departure events for buses for calendar year 2018. Due to data collection issues, data is not guaranteed to be complete for any stop or date.Data Dictionary:

    Name
    Description
    Data Type
    Example
    
    
    service_date
    Date on which the trip took place. Service dates run from around 2:00AM - 1:59:59AM 
    Date
    2019-12-31
    
    
    route_id
    Route Id
    String
    01
    
    
    direction_id
    Identifies whether the trip is traveling inbound or outbound
    String
    Inbound
    
    
    half_trip_id
    Identification for the one way trip
    Integer
    40836717
    
    
    stop_id
    GTFS-compatible stop
    Integer
    75
    
    
    time_point_id
    The code for the timepoint
    String
    mit
    
    
    time_point_order
    The order of this timepoint in the trip
    Integer
    4
    
    
    point_type
    Identifies whether the stop is the starting point, midpoint, or endpoint for the trip 
    String
    Midpoint
    
    
    standard_type
    Identifies whether the trip should be evaluated on the scheudle standard or headway standard. 
    String
    Headway
    
    
    scheduled
    The time the trip was scheduled to depart the stop. The scheduled time should not be used to evaluated reliability if this trip is evaluated on the headway standard. Only the headway and run time should be used per the Service Delivery Policy.
    Time
    12:30 AM
    
    
    actual
    The time the trip actually departed the timepoint.
    Time
    12:29 AM
    
    Integer
    -60
    
    
    scheduled_headway
    The scheduled time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard.
    
    Integer
    1200
    
    
    headway
    The actual time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard or if this is the last stop on the trip (endpoint). Endpoints are evaluated by whether the trip runtime is within 120% of the scheduled run time.
    
    Integer
    1163
    

    MassDOT/MBTA shall not be held liable for any errors in this data. This includes errors of omission, commission, errors concerning the content of the data, and relative and positional accuracy of the data. This data cannot be construed to be a legal document. Primary sources from which this data was compiled must be consulted for verification of information contained in this data.

  9. s

    Line (graphical)

    • data.sbb.ch
    • sbb.opendatasoft.com
    • +1more
    csv, excel, geojson +1
    Updated May 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Line (graphical) [Dataset]. https://data.sbb.ch/explore/dataset/linie-mit-polygon/
    Explore at:
    geojson, excel, json, csvAvailable download formats
    Dataset updated
    May 28, 2021
    Description

    Maps out the SBB lines as a geometric line.

  10. a

    Twitter Sentiment Geographical Index (MIT & Harvard)

    • sdgstoday-sdsn.hub.arcgis.com
    Updated Sep 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Solutions Network (2023). Twitter Sentiment Geographical Index (MIT & Harvard) [Dataset]. https://sdgstoday-sdsn.hub.arcgis.com/datasets/twitter-sentiment-geographical-index-mit-harvard-3
    Explore at:
    Dataset updated
    Sep 12, 2023
    Dataset authored and provided by
    Sustainable Development Solutions Network
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    This feature layer is part of SDGs Today. Please see sdgstoday.orgPromoting well-being is one of the key targets of Sustainable Development Goals at the United Nations. Many governments worldwide are incorporating subjective well-being (SWB) indicators to complement traditional objective and economic metrics. Our Twitter Sentiment Geographical Index (TSGI) can provide a high granularity monitor of well-being worldwide.This dataset is a joint effort of the Sustainable Urbanization Lab at MIT and Center for Geographic Analysis at Harvard.

  11. w

    Sand and Gravel Operations

    • data.wu.ac.at
    • azgeo-data-hub-agic.hub.arcgis.com
    • +5more
    Updated Jul 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Homeland Security (2018). Sand and Gravel Operations [Dataset]. https://data.wu.ac.at/schema/data_gov/MTYxN2E0YzEtNmU0My00NjE0LWE5YzgtYzliNGVkZjZlNjEx
    Explore at:
    Dataset updated
    Jul 3, 2018
    Dataset provided by
    Department of Homeland Security
    Description

    This map layer includes sand and gravel operations in the United States. These data were obtained from information reported voluntarily to the USGS by the aggregate producing companies. The data represent commodities covered by the Minerals Information Team (MIT) of the U.S. Geological Survey, and the operations are those considered active in 2002 with production greater than 50,000 tons, which are non-government, non-portable, and surveyed by the MIT. This is a replacement for the January 2001 map layer.

  12. m

    MBTA Bus Arrival Departure Times 2020

    • gis.data.mass.gov
    • hub.arcgis.com
    • +1more
    Updated Apr 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts geoDOT (2020). MBTA Bus Arrival Departure Times 2020 [Dataset]. https://gis.data.mass.gov/datasets/4c1293151c6c4a069d49e6b85ee68ea4
    Explore at:
    Dataset updated
    Apr 23, 2020
    Dataset authored and provided by
    Massachusetts geoDOT
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This file contains the arrival and departure events for buses between January and December 2020. Due to data collection issues, data is not guaranteed to be complete for any stop or date.Data Dictionary:

    Name
    Description
    Data Type
    Example
    
    
    service_date
    Date on which the trip took place. Service dates run from around 2:00AM - 1:59:59AM 
    Date
    2019-12-31
    
    
    route_id
    Route Id
    String
    01
    
    
    direction_id
    Identifies whether the trip is traveling inbound or outbound
    String
    Inbound
    
    
    half_trip_id
    Identification for the one way trip
    Integer
    40836717
    
    
    stop_id
    GTFS-compatible stop
    Integer
    75
    
    
    time_point_id
    The code for the timepoint
    String
    mit
    
    
    time_point_order
    The order of this timepoint in the trip
    Integer
    4
    
    
    point_type
    Identifies whether the stop is the starting point, midpoint, or endpoint for the trip 
    String
    Midpoint
    
    
    standard_type
    Identifies whether the trip should be evaluated on the scheudle standard or headway standard. 
    String
    Headway
    
    
    scheduled
    The time the trip was scheduled to depart the stop. The scheduled time should not be used to evaluated reliability if this trip is evaluated on the headway standard. Only the headway and run time should be used per the Service Delivery Policy.
    Time
    12:30 AM
    
    
    actual
    The time the trip actually departed the timepoint.
    Time
    12:29 AM
    
    
    scheduled_headway
    The scheduled time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard.
    
    Integer
    1200
    
    
    headway
    The actual time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard or if this is the last stop on the trip (endpoint). Endpoints are evaluated by whether the trip runtime is within 120% of the scheduled run time.
    
    Integer
    1163
    

    MassDOT/MBTA shall not be held liable for any errors in this data. This includes errors of omission, commission, errors concerning the content of the data, and relative and positional accuracy of the data. This data cannot be construed to be a legal document. Primary sources from which this data was compiled must be consulted for verification of information contained in this data.

  13. Kreisgrenzen 2023

    • opendata.coworkingmap.de
    • anrgeodata.vermont.gov
    • +6more
    Updated Jul 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2023). Kreisgrenzen 2023 [Dataset]. https://opendata.coworkingmap.de/maps/esri-de-content::kreisgrenzen-2023/about
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Deutschland
    Area covered
    Description

    Der Service stellt die administrativen Kreisgrenzen zum Stand 01. Januar 2023 ohne Wasserflächen im Maßstab 1:250.000 zur Verfügung.Der Datenbestand entspricht den Georeferenzdaten VG250-Ebenen des BKG Bundesamtes für Kartographie und Geodäsie auf Ebene Kreis (KRS) mit folgender Geometrieänderung:Es wurden nur die Land-Geometrien (GF = 4) übernommen und auf Web Mercator umprojiziert.VG250 Datensatzbeschreibung des BKGEnglish This service provides the administrative County boundaries of Germany as of January 1st, 2023.This layer only contains land surfaces at a 1:250,000 scale. It corresponds to the georeferenced VG250 data of the BKG Federal Agency for Cartography and Geodesy.Only the land geometries (GF=4) were adopted and projected to Web Mercator.

  14. m

    MBTA Bus Arrival Departure Times 2019

    • gis.data.mass.gov
    • hub.arcgis.com
    • +1more
    Updated Sep 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts geoDOT (2019). MBTA Bus Arrival Departure Times 2019 [Dataset]. https://gis.data.mass.gov/datasets/1bd340b39942438685d8dcdfe3f26d1a
    Explore at:
    Dataset updated
    Sep 27, 2019
    Dataset authored and provided by
    Massachusetts geoDOT
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This file contains the arrival and departure events for buses for calendar 2019. Due to data collection issues, data is not guaranteed to be complete for any stop or date.Data Dictionary:

    Name
    Description
    Data Type
    Example
    
    
    service_date
    Date on which the trip took place. Service dates run from around 2:00AM - 1:59:59AM 
    Date
    2019-12-31
    
    
    route_id
    Route Id
    String
    01
    
    
    direction_id
    Identifies whether the trip is traveling inbound or outbound
    String
    Inbound
    
    
    half_trip_id
    Identification for the one way trip
    Integer
    40836717
    
    
    stop_id
    GTFS-compatible stop
    Integer
    75
    
    
    time_point_id
    The code for the timepoint
    String
    mit
    
    
    time_point_order
    The order of this timepoint in the trip
    Integer
    4
    
    
    point_type
    Identifies whether the stop is the starting point, midpoint, or endpoint for the trip 
    String
    Midpoint
    
    
    standard_type
    Identifies whether the trip should be evaluated on the scheudle standard or headway standard. 
    String
    Headway
    
    
    scheduled
    The time the trip was scheduled to depart the stop. The scheduled time should not be used to evaluated reliability if this trip is evaluated on the headway standard. Only the headway and run time should be used per the Service Delivery Policy.
    Time
    12:30 AM
    
    
    actual
    The time the trip actually departed the timepoint.
    Time
    12:29 AM
    
    
    scheduled_headway
    The scheduled time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard.
    
    Integer
    1200
    
    
    headway
    The actual time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard or if this is the last stop on the trip (endpoint). Endpoints are evaluated by whether the trip runtime is within 120% of the scheduled run time.
    
    Integer
    1163
    

    MassDOT/MBTA shall not be held liable for any errors in this data. This includes errors of omission, commission, errors concerning the content of the data, and relative and positional accuracy of the data. This data cannot be construed to be a legal document. Primary sources from which this data was compiled must be consulted for verification of information contained in this data.

  15. m

    MBTA Bus Arrival Departure Times 2022

    • gis.data.mass.gov
    • hub.arcgis.com
    Updated Apr 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts geoDOT (2021). MBTA Bus Arrival Departure Times 2022 [Dataset]. https://gis.data.mass.gov/datasets/ef464a75666349f481353f16514c06d0
    Explore at:
    Dataset updated
    Apr 1, 2021
    Dataset authored and provided by
    Massachusetts geoDOT
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This file contains the arrival and departure events for buses up to the most recent completed month of 2022. Due to data collection issues, data is not guaranteed to be complete for any stop or date.Data Dictionary:

    Name
    Description
    Data Type
    Example
    
    
    service_date
    Date on which the trip took place. Service dates run from around 2:00AM - 1:59:59AM 
    Date
    2019-12-31
    
    
    route_id
    Route Id
    String
    01
    
    
    direction_id
    Identifies whether the trip is traveling inbound or outbound
    String
    Inbound
    
    
    half_trip_id
    Identification for the one way trip
    Integer
    40836717
    
    
    stop_id
    GTFS-compatible stop
    Integer
    75
    
    
    time_point_id
    The code for the timepoint
    String
    mit
    
    
    time_point_order
    The order of this timepoint in the trip
    Integer
    4
    
    
    point_type
    Identifies whether the stop is the starting point, midpoint, or endpoint for the trip 
    String
    Midpoint
    
    
    standard_type
    Identifies whether the trip should be evaluated on the scheudle standard or headway standard. 
    String
    Headway
    
    
    scheduled
    The time the trip was scheduled to depart the stop. The scheduled time should not be used to evaluated reliability if this trip is evaluated on the headway standard. Only the headway and run time should be used per the Service Delivery Policy.
    Time
    12:30 AM
    
    
    actual
    The time the trip actually departed the timepoint.
    Time
    12:29 AM
    
    
    scheduled_headway
    The scheduled time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard.
    
    Integer
    1200
    
    
    headway
    The actual time between the trip and the previous trip at the stop, in seconds. NULL if this trip is evaluated on the schedule standard or if this is the last stop on the trip (endpoint). Endpoints are evaluated by whether the trip runtime is within 120% of the scheduled run time.
    
    Integer
    1163
    

    MassDOT/MBTA shall not be held liable for any errors in this data. This includes errors of omission, commission, errors concerning the content of the data, and relative and positional accuracy of the data. This data cannot be construed to be a legal document. Primary sources from which this data was compiled must be consulted for verification of information contained in this data.

  16. 3D Buildings Switzerland

    • 3d-mit-arcgis-esridech.hub.arcgis.com
    • discussions-prod-test-prod-pre-hub.hub.arcgis.com
    • +1more
    Updated Jun 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Suisse (2021). 3D Buildings Switzerland [Dataset]. https://3d-mit-arcgis-esridech.hub.arcgis.com/datasets/EsriCH-Content::3d-buildings-switzerland
    Explore at:
    Dataset updated
    Jun 25, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Suisse
    Area covered
    Description

    swissBUILDINGS3D 3.0 Beta is a vector based dataset provided by swisstopo which describes buildings as 3D models with roof geometries and roof overhangs. The detailed roof structures are recorded in three dimensions and enhanced with additional information as attributes. The high degree of detail in all three dimensions, together with the high coverage and realistic rendering of the building volumes, make this product a valuable basic dataset for a large range of applications. swissBUILDINGS3D 3.0 is updated every six years.With the current relesase of swissBUILDINGS3D 3.0 Beta, swisstopo provides building models structred according to the federal building identifier (EGID) and containing the EGID as additional information. The data are available in the cantons AG, AI, AR, BE, BL, BS, GL, JU, SG, SZ, TG and the city of Zurich.Application examplesThis scene layer can be applied in a broad range of areas, and constitutes an ideal planning and visualization tool for planners, environmental engineers, public authorities, architects, etc. For example, this data offers the ideal background data for the following use cases:3D visualizations (e.g. tourism, marketing, information)Basis of urban and spatial planning, residential development projects, mobility, telecommunications or energyVisibility and shadow analysesCalculation of solar potentialSimulation of natural disastersAnalyses of distribution (noise, air pollutants, electromagnetic radiation)Ecology and urban climatologyAttributes with identifiers from the Swiss official commune register were added and allow filtering by municipalities, districts or cantons.This scene layer is provided in Web Mercator projection (EPSG 3857). The source data can be downloaded from swisstopo's website.Data vintage: December 2024. The service is updated semiannually.

  17. Ausblick - Governmental und Urban Twin als integratives System mit ArcGIS

    • esrikon-mediathek-2022-esridech.hub.arcgis.com
    Updated Nov 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Demoportal Esri Deutschland & Schweiz (2022). Ausblick - Governmental und Urban Twin als integratives System mit ArcGIS [Dataset]. https://esrikon-mediathek-2022-esridech.hub.arcgis.com/datasets/ausblick-governmental-und-urban-twin-als-integratives-system-mit-arcgis
    Explore at:
    Dataset updated
    Nov 25, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    ArcGIS Demoportal Esri Deutschland & Schweiz
    Description

    Lisa Stähli, Senior Product Engineer ArcGIS Urban, Esri R&D Center Zurich

  18. Hexagone 6,25 km

    • hub.arcgis.com
    • plattform-npgeo-vfdb.hub.arcgis.com
    • +2more
    Updated Jul 27, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2018). Hexagone 6,25 km [Dataset]. https://hub.arcgis.com/datasets/esri-de-content::hexagone-625-km/about
    Explore at:
    Dataset updated
    Jul 27, 2018
    Dataset provided by
    ESRIhttp://esri.com/
    Authors
    Esri Deutschland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Dieser Feature Layer enthält Hexagone mit einer Nord-Süd-Ausdehnung von 6,25 km. Er kann als Eingabe-Layer für Analysen dienen wie Punkte aggregieren. Dieses Werkzeug verwendet die Hexagone, um z.B. eine Reihe von Punkt-Features zusammenzufassen. Dabei können statistische Informationen wie die Anzahl der Punkte aber auch der Durchschnittswert eines bestimmten Punkt-Attributs an die Hexagon-Fläche gebracht werden. Auf diese Weise können Punktinformationen, die zu zahlreich für eine Darstellung in der Karte sind, aggregiert und in ansprechender Weise visualisiert werden.Die Darstellung in Form von Hexagonen wird vom Betrachter oft als weniger „hart“ empfunden im Vergleich zu Quadraten.Sie können mit ArcGIS auch eigene Hexagone erstellen. Wie, das beschreibt die Online-Hilfe unter Mosaik generieren.

  19. Bundesländer 2020 mit Einwohnerzahl

    • opendataportal-esri-konferenz-esri-training.opendata.arcgis.com
    • portal-esri-de.opendata.arcgis.com
    • +3more
    Updated Oct 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2021). Bundesländer 2020 mit Einwohnerzahl [Dataset]. https://opendataportal-esri-konferenz-esri-training.opendata.arcgis.com/items/7f01dfe9fd924f6baacc67f63dca0620
    Explore at:
    Dataset updated
    Oct 19, 2021
    Dataset provided by
    ESRIhttp://esri.com/
    Authors
    Esri Deutschland
    Area covered
    Description

    Der Service stellt die administrativen Bundesländergrenzen mit Einwohnerzahl zum Stand 31. Dezember 2020 ohne Wasserflächen im Maßstab 1:250.000 zur Verfügung.Der Datenbestand entspricht den Georeferenzdaten VG250-Ebenen des BKG Bundesamtes für Kartographie und Geodäsie auf Ebene Bundesland (LAN) mit folgender Geometrieänderung:Es wurden nur die Land-Geometrien (GF = 3 oder 4) übernommen, aufgelöscht und auf Web Mercator umprojiziert.VG250 Datensatzbeschreibung des BKGEnglish This service provides the administrative Federal State boundaries of Germany with population number as of December 31st, 2020.This layer only contains land surfaces at a 1:250,000 scale. It corresponds to the georeferenced VG250 data of the BKG Federal Agency for Cartography and Geodesy.Only the land geometries (GF=3 or GF=4) were adopted, dissolved and projected to Web Mercator.

  20. a

    Miscellaneous Industrial Mineral Operations

    • disasters-usnsdi.opendata.arcgis.com
    • disasters-geoplatform.hub.arcgis.com
    • +2more
    Updated Dec 1, 2005
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2005). Miscellaneous Industrial Mineral Operations [Dataset]. https://disasters-usnsdi.opendata.arcgis.com/datasets/636e283fc23645dfaeebdac5d9254776
    Explore at:
    Dataset updated
    Dec 1, 2005
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    Area covered
    Description

    This data set includes miscellaneous industrial minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the U.S. Geological Survey. The mineral operations are plants and (or) mines surveyed by the MIT and considered currently active in 2003. This is a replacement for the July 2004 map layer.The data is legacy and not expected to be updated. It is being provided as the best available until Mineral Resources identifies an alternative data source.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Facility Information Systems (2021). MIT Thematic Basemap [Dataset]. https://maps-fisgis.hub.arcgis.com/maps/7ff152d712184445b6e8d0a65c594081

MIT Thematic Basemap

Explore at:
Dataset updated
Nov 3, 2021
Dataset authored and provided by
Facility Information Systems
Area covered
Description

MIT light grey basemap used for thematic mapping.

Search
Clear search
Close search
Google apps
Main menu