4 datasets found
  1. f

    Action recognition performance.

    • plos.figshare.com
    xls
    Updated Apr 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Joannou; Pia Rotshtein; Uta Noppeney (2024). Action recognition performance. [Dataset]. http://doi.org/10.1371/journal.pone.0301098.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 1, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Michael Joannou; Pia Rotshtein; Uta Noppeney
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Audiovisual Moments in Time (AVMIT), a large-scale dataset of audiovisual action events. In an extensive annotation task 11 participants labelled a subset of 3-second audiovisual videos from the Moments in Time dataset (MIT). For each trial, participants assessed whether the labelled audiovisual action event was present and whether it was the most prominent feature of the video. The dataset includes the annotation of 57,177 audiovisual videos, each independently evaluated by 3 of 11 trained participants. From this initial collection, we created a curated test set of 16 distinct action classes, with 60 videos each (960 videos). We also offer 2 sets of pre-computed audiovisual feature embeddings, using VGGish/YamNet for audio data and VGG16/EfficientNetB0 for visual data, thereby lowering the barrier to entry for audiovisual DNN research. We explored the advantages of AVMIT annotations and feature embeddings to improve performance on audiovisual event recognition. A series of 6 Recurrent Neural Networks (RNNs) were trained on either AVMIT-filtered audiovisual events or modality-agnostic events from MIT, and then tested on our audiovisual test set. In all RNNs, top 1 accuracy was increased by 2.71-5.94% by training exclusively on audiovisual events, even outweighing a three-fold increase in training data. Additionally, we introduce the Supervised Audiovisual Correspondence (SAVC) task whereby a classifier must discern whether audio and visual streams correspond to the same action label. We trained 6 RNNs on the SAVC task, with or without AVMIT-filtering, to explore whether AVMIT is helpful for cross-modal learning. In all RNNs, accuracy improved by 2.09-19.16% with AVMIT-filtered data. We anticipate that the newly annotated AVMIT dataset will serve as a valuable resource for research and comparative experiments involving computational models and human participants, specifically when addressing research questions where audiovisual correspondence is of critical importance.

  2. f

    Description of data in test_set.csv.

    • plos.figshare.com
    Updated Apr 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Apr 1, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Michael Joannou; Pia Rotshtein; Uta Noppeney
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Audiovisual Moments in Time (AVMIT), a large-scale dataset of audiovisual action events. In an extensive annotation task 11 participants labelled a subset of 3-second audiovisual videos from the Moments in Time dataset (MIT). For each trial, participants assessed whether the labelled audiovisual action event was present and whether it was the most prominent feature of the video. The dataset includes the annotation of 57,177 audiovisual videos, each independently evaluated by 3 of 11 trained participants. From this initial collection, we created a curated test set of 16 distinct action classes, with 60 videos each (960 videos). We also offer 2 sets of pre-computed audiovisual feature embeddings, using VGGish/YamNet for audio data and VGG16/EfficientNetB0 for visual data, thereby lowering the barrier to entry for audiovisual DNN research. We explored the advantages of AVMIT annotations and feature embeddings to improve performance on audiovisual event recognition. A series of 6 Recurrent Neural Networks (RNNs) were trained on either AVMIT-filtered audiovisual events or modality-agnostic events from MIT, and then tested on our audiovisual test set. In all RNNs, top 1 accuracy was increased by 2.71-5.94% by training exclusively on audiovisual events, even outweighing a three-fold increase in training data. Additionally, we introduce the Supervised Audiovisual Correspondence (SAVC) task whereby a classifier must discern whether audio and visual streams correspond to the same action label. We trained 6 RNNs on the SAVC task, with or without AVMIT-filtering, to explore whether AVMIT is helpful for cross-modal learning. In all RNNs, accuracy improved by 2.09-19.16% with AVMIT-filtered data. We anticipate that the newly annotated AVMIT dataset will serve as a valuable resource for research and comparative experiments involving computational models and human participants, specifically when addressing research questions where audiovisual correspondence is of critical importance.

  3. R

    Iot Project Dataset

    • universe.roboflow.com
    zip
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HandGesturerecog (2023). Iot Project Dataset [Dataset]. https://universe.roboflow.com/handgesturerecog/iot-project-rpv5k/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 17, 2023
    Dataset authored and provided by
    HandGesturerecog
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Variables measured
    Hand Moment Bounding Boxes
    Description

    IoT Project

    ## Overview
    
    IoT Project is a dataset for object detection tasks - it contains Hand Moment annotations for 320 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [MIT license](https://creativecommons.org/licenses/MIT).
    
  4. f

    Statistics of popular audiovisual action datasets.

    • plos.figshare.com
    xls
    Updated Apr 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 1, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Michael Joannou; Pia Rotshtein; Uta Noppeney
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Statistics of popular audiovisual action datasets.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Michael Joannou; Pia Rotshtein; Uta Noppeney (2024). Action recognition performance. [Dataset]. http://doi.org/10.1371/journal.pone.0301098.t006

Action recognition performance.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Apr 1, 2024
Dataset provided by
PLOS ONE
Authors
Michael Joannou; Pia Rotshtein; Uta Noppeney
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

We present Audiovisual Moments in Time (AVMIT), a large-scale dataset of audiovisual action events. In an extensive annotation task 11 participants labelled a subset of 3-second audiovisual videos from the Moments in Time dataset (MIT). For each trial, participants assessed whether the labelled audiovisual action event was present and whether it was the most prominent feature of the video. The dataset includes the annotation of 57,177 audiovisual videos, each independently evaluated by 3 of 11 trained participants. From this initial collection, we created a curated test set of 16 distinct action classes, with 60 videos each (960 videos). We also offer 2 sets of pre-computed audiovisual feature embeddings, using VGGish/YamNet for audio data and VGG16/EfficientNetB0 for visual data, thereby lowering the barrier to entry for audiovisual DNN research. We explored the advantages of AVMIT annotations and feature embeddings to improve performance on audiovisual event recognition. A series of 6 Recurrent Neural Networks (RNNs) were trained on either AVMIT-filtered audiovisual events or modality-agnostic events from MIT, and then tested on our audiovisual test set. In all RNNs, top 1 accuracy was increased by 2.71-5.94% by training exclusively on audiovisual events, even outweighing a three-fold increase in training data. Additionally, we introduce the Supervised Audiovisual Correspondence (SAVC) task whereby a classifier must discern whether audio and visual streams correspond to the same action label. We trained 6 RNNs on the SAVC task, with or without AVMIT-filtering, to explore whether AVMIT is helpful for cross-modal learning. In all RNNs, accuracy improved by 2.09-19.16% with AVMIT-filtered data. We anticipate that the newly annotated AVMIT dataset will serve as a valuable resource for research and comparative experiments involving computational models and human participants, specifically when addressing research questions where audiovisual correspondence is of critical importance.

Search
Clear search
Close search
Google apps
Main menu