Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
nuImages-GeoDiffusion Dataset Card
nuImages-GeoDiffusion is the official dataset annotation file used to train GeoDiffusion on the nuImages dataset. We follow the implementations of mmdetection3d, while saving the annotation results in standard COCO format. Check detailed usage in our Github repo.
SUN RGB-D Data
license: mit
folders
sunrgbd_trainval ├── calib ├── depth ├── image ├── label ├── label_v1 └── seg_label
usages
follow mmdetection3d/data/sunrgbd/README.md python3 tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd
sunrgbd ├── README.md ├── sunrgbd_trainval │ ├── calib │ ├── depth │ ├── image │ ├── label │ ├── label_v1 │ ├── seg_label │ ├── train_data_idx.txt… See the full description on the dataset page: https://huggingface.co/datasets/youdaoyzbx/processed_sunrgbd.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Preparing ISO
Datasets
We provide the OccScanNet dataset files here, but you should agree the term of use of ScanNet, CompleteScanNet dataset. For a simplified way to prepare the dataset, you just download the preprocessed_data to ISO/data/occscannet as gathered_data and download the posed_images to ISO/data/scannet. However, the complete dataset generating process is provided as followed:
OccScanNet
Clone the official MMDetection3D repository.
git clone… See the full description on the dataset page: https://huggingface.co/datasets/hongxiaoy/OccScanNet.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
nuImages-GeoDiffusion Dataset Card
nuImages-GeoDiffusion is the official dataset annotation file used to train GeoDiffusion on the nuImages dataset. We follow the implementations of mmdetection3d, while saving the annotation results in standard COCO format. Check detailed usage in our Github repo.