This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2021, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs, delineated in 21 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
2010 US Census Block Groups for Hennepin County with subset of PL94-171 demographic data. The Hennepin County GIS Office downloaded US Census data from the following sites:Shapefiles:http://www.census.gov/cgi-bin/geo/shapefiles2010/main PL94-171:http://www.census.gov/rdo/data/2010_census_redistricting_data_pl_94-171_summary_files.html PL94-171 tabular data was post processed per instructions and stored in an Access database. Records and a subset of the 290 plus fields were extracted from the master tables using SQL statements. A copy of the statement has been included in the Lineage section of metadata. Tables were registered as a geodatabase and copied to a File Geodatabase. Shapefiles were imported into the File Geodatabase and projected to UTM Zone 15 N. The feature classes were joined to the tabular data and saved as the final US Census layer.The feature classes underwent visual inspection. The number of records were compared and checked. The attribute values were compared to existing Maptitude US Census data. Please contact the Hennepin GIS Office if you require additional PL94-171 fields. Hennepin County GIS Office A-705 Government Center Minneapolis, Minnesota 55487-075 GIS.Info@co.hennepin.mn.us Phone: 612-596-9484 FAX: 612-348-2837 The original metadata is contained below. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are defined before tabulation block delineation and numbering, but are clusters of blocks within the same census tract that have the same first digit of their 4-digit census block number from the same decennial census. For example, Census 2000 tabulation blocks 3001, 3002, 3003,.., 3999 within Census 2000 tract 1210.02 are also within BG 3 within that census tract. Census 2000 BGs generally contained between 600 and 3,000 people, with an optimum size of 1,500 people. Most BGs were delineated by local participants in the Census Bureau's Participant Statistical Areas Program (PSAP). The Census Bureau delineated BGs only where the PSAP participant declined to delineate BGs or where the Census Bureau could not identify any local PSAP participant. A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within census tract. Within the standard census geographic hierarchy, BGs never cross county or census tract boundaries, but may cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. BGs have a valid code range of 0 through 9. BGs coded 0 were intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. For Census 2000, rather than extending a census tract boundary into the Great Lakes or out to the U.S. nautical three-mile limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore. The Census Bureau assigned a default census tract number of 0 and BG of 0 to these offshore, water-only areas not included in regularly numbered census tract areas.
Link to Attribute Table Information: http://gis.hennepin.us/OpenData/Metadata/2010%20Census%20Block%20Groups.pdf
Use Limitations: This data (i) is furnished "AS IS" with no representation as to completeness or accuracy; (ii) is furnished with no warranty of any kind; and (iii) is not suitable for legal, engineering or surveying purposes. Hennepin County shall not be liable for any damage, injury or loss resulting from this data.
Ā© US Census Bureau. See additional information in Abstract and Use Limitations. This data was modified by the Hennepin County GIS Office. This layer is a component of Datasets for Hennepin County AGOL and Hennepin County Open Data..
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
This dataset includes three separate tables for census blocks, block groups and tracts. The tables are a select subset of population data from the Census Bureau's P-94-171 redistricting data. These tables can be linked to census block, block group and tract boundary files.
Notes:
- When linking population tables to the corresponding shape file, be aware that there are 3 block groups in the block group shape file that have 2 polygons each and 1 tract in the tract shape file that has 2 polygons. This impacts population summaries.
Bg00: 270030509012, 270530253011, 271230426023
Tract00: 27003050901
This dataset consists of a correspondence table and shape file of the combined 1990 and 2000 Census tracts.
Note: Census tracts from 1990 and 2000 do not match in all areas. This dataset is an attempt to match them. Some combining and splitting of tracts was necessary. See the Lineage in Section 2 of the metadata for more information.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2021, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs, delineated in 21 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
A feature service is also available here: https://gis.ducks.org/datasets/duinc::minnesota-restorable-wetlandsHISTORY: In October 2000, a Restorable Wetlands Working Group formed to begin mapping all of the restorable wetlands in the glaciated tallgrass Prairie Pothole Region of Minnesota and Iowa. Today, fewer than 10% of the original wetlands - once of unparalleled importance to continental waterbird populations - are left in existence. Fortunately, wetlands once drained for agriculture may be restored to many of their historic functions. Restoration of multiple wetland functions is of utmost effectiveness when focused at priority restoration landscapes, therefore data on the historic distribution of wetlands is an integral part of developing strategic regional habitat restoration plans.Opportunistic wetland restorations often fail to attain out expectations for wetland function. Nevertheless, between $70 - $100,000,000 are spent annually in Minnesota for wetland restoration. A strategic plan for wetland restoration can make these expenditures more effective; however, a strategic wetland restoration plan requires a priori information on the distribution and extent of restorable wetlands. The collective goal of the Restorable Wetlands Working Group is the eventual development of a set of multi-agency decision support tools that collectively comprise a comprehensive environmental management plan for wetlands - all based on the same base data layers and developed in joint consultation. An effort is underway to delineate restorable wetlands in all intensively farmed areas of MN and IA.A pilot project determined the best technique to map drained wetlands in agricultural landscapes was photointerpretation. This pilot project evaluated the accuracy of three potential delineation techniques: digital hydric soils databases, digital elevation models, and manual stereoscopic photointerpretation on high-altitude color infrared aerial photographs. The project covered nearly 4,000 square miles of different land forms and wetland characteristics. After mapping was completed, some 1,500 drained wetlands were observed in the field to assess the accuracy of each technique. Only photointerpretation provided reliable results.One area that fell into the pilot study was the Okabena quadrangle in east-central Jackson County in Minnesota. Okabena vividly illustrates the potential of humans to alter the natural landscape. While Okabena historically encompassed more than 8,940 acres of depressional wetland - 27% of the total area of Okabena - after nearly 100 years of agricultural drainage only 1,280 acres of those original wetlands remain, representing an 86% reduction. When empirical models used to estimate duck pairs on individual wetlands are applied to the change from historic to current wetland habitat within Okabena, they estimate a 92% reduction in the habitat potential for common dabbling duck species.The Okabena quadrangle's wetland density once exceeded that of most of the remaining U.S. Prairie Pothole Region. Without strong incentives for wetland conservation and effective methods to delineate high-priority landscapes for restoration, the Okabena quadrangle foretells one possible future for much of the mixed-grass Prairie Pothole Region further west.The Final Status map was completed in 2012.Contact Information:Rex JohnsonUnited States Fish and Wildlife Service21932 State Highway 210Fergus Falls, MN 56537(218) 736-0606rex_johnson@fws.govPhotointerpretationNational Aerial Photography Program (NAPP) (1:40,000 scale) color infrared (CIR) photographs acquired in April and May, 1991 and 1992, were viewed in stereo pairs at 5X magnification using a Cartographic Engineering stereoscope. A Mylar overlay was mounted on one photo of each stereo pair and a rectangular work area was delineated on the overlay comprising one-quarter of a USGS 7.5 min topographic quadrangle. A minimum of 4 fiduciary marks were placed on the overlay to enable geographic rectification of digital data covering the work area. One fiduciary mark was placed at the corner of the US Geological Survey (USGS) 7.5 min quadrangle and others at conspicuous road intersections near the other 3 corners of the work area. Drained depressional wetlands were delineated on the Mylar overlay within the work area using a 6X0 (.13 mm diameter) rapidograph pen and indelible ink. Collateral data was consulted during the delineation process. These data consisted of published county soil surveys and descriptions of hydric soils, USDA Farm Service Agency compliance slides (aerial 35 mm slides) acquired in 1993 (immediately after a period of intense precipitation), USGS 7.5 min topographic maps, and National Wetlands Inventory (NWI) maps. Black and white NAPP photographs (1:40,000 scale) acquired primarily in August and September, 1996, were reviewed and rejected as collateral data because they were acquired under dry conditions.Other specific photointerpretation protocols were:1. All drained depressional wetlands, regardless of size, were delineated.2. NWI-delineated wetlands with a Ad@ (partially drained) modifier in the classification code were not delineated unless the original delineation failed to encompass the complete historic wetland area.3. NWI-delineated wetlands that did not contain a Ad@ modifier in the classification code were delineated if the original delineation did not include the entire historic wetland area.4. Wetlands identified on NWI maps which did not exhibit wetland characteristics (i.e. hydrology, hydrophytes, etc) on new (1992) CIR photography were delineated even if no evidence of drainage was apparent.5. Wetlands not delineated on NWI maps, and in cropland, were delineated.6. Wetlands not delineated on NWI maps, and in grassland, were not delineated unless evidence of drainage was observed on the aerial photo.7. Wetlands not delineated on NWI maps, and in trees, were not delineated.Tolerances:Scanned line data were converted to a polygon using a 6 m fuzzy tolerance. Open polygons were manually closed and cleaned with a 1.2 m fuzzy tolerance which was used for all subsequent data processing.Datafile Description and Attribute Definitions[County_Name]_nwx - National Wetlands Inventory delineations (see https://www.fws.gov/program/national-wetlands-inventory/wetlands-mapper for NWI delineation standards). Note: Wetland classifications in these data often differ slightly from the original NWI classification. NWI wetland classifications were simplified for these data by removing mixed classes and multiple special modifiers, and by standardizing letter case. In each case of mixed classes and multiple special modifiers, the first class or special modifier was retained.AttributesRestorable - 0 = Islands and the Universal Polygon100 = Restorable depressional wetland delineated using protocols described aboveCounty Name ā The name of the county in which the center of the polygon is located.State Name ā The name of the state.FIPS ā The FIPS code.
Soil_Samples_BACI Available only by request on a case by case basis. Contact rthe author, David Nowak, at dnowak@fs.fed.us Tags Biophysical Resources, Land, Social Institutions, Health, BES, Soil, Lead, Sample, UFORE Summary Samples were taken to relate soil data to vegetation data obtained for the Urban Forestry Effects Model (UFORE). Description The data is soil concentrations and characteristics of the following: land use, bulk density, sand, silt, clay, pH, organic matter, nitrogen, Al, P, S, Ti, Cr, Mn, Fe, Co, Ni, Cu Zn, Mo, Pb, Cd, Na, Mg, K, Ca, and V. Soils were sampled in 125 plots located within the City of Baltimore in the summer of 2000. The plots were randomly stratified by Anderson Land Cover Classification System Level II, which included commercial, industrial, institutional, transportation right-of-ways, high and medium density residential (there were no low density residential areas identified within the city boundaries), golf course, park, urban open, forest, and wetland land-use types. The number of plots situated in each land-use type was weighted to their proportion of spatial area within the City. The resultant number of plots sampled for soil by land-use type was: commercial (n = 2); industrial (n = 3); institutional (n = 10); transportation right-of-ways (n = 7); high density residential (n = 19); medium density residential (n = 33); golf course (n = 3); riparian (n=2); park (n = 10); urban open (n = 10); and forest (n = 26) land-use types, respectively. The distribution of plots represents the proportion of area covered by impervious surfaces. Credits Rich Pouyat, USDA Forest Service Use limitations Not for profit use only Extent West -76.711030 East -76.530612 North 39.371355 South 39.200686 Scale Range There is no scale range for this item. The data is soil concentrations and characteristics of the following: land use, bulk density, sand, silt, clay, pH, organic matter, nitrogen, Al, P, S, Ti, Cr, Mn, Fe, Co, Ni, Cu Zn, Mo, Pb, Cd, Na, Mg, K, Ca, and V. Soils were sampled in 125 plots located within the City of Baltimore in the summer of 2000. The plots were randomly stratified by Anderson Land Cover Classification System Level II, which included commercial, industrial, institutional, transportation right-of-ways, high and medium density residential (there were no low density residential areas identified within the city boundaries), golf course, park, urban open, forest, and wetland land-use types. The number of plots situated in each land-use type was weighted to their proportion of spatial area within the City. The resultant number of plots sampled for soil by land-use type was: commercial (n = 2); industrial (n = 3); institutional (n = 10); transportation right-of-ways (n = 7); high density residential (n = 19); medium density residential (n = 33); golf course (n = 3); riparian (n=2); park (n = 10); urban open (n = 10); and forest (n = 26) land-use types, respectively. The distribution of plots represents the proportion of area covered by impervious surfaces.
description: This polygon shapefile provides county or county-equivalent boundaries for the conterminous United States and was created specifically for use with the data tables published as Selected Items from the Census of Agriculture for the Conterminous United States, 1950-2012 (LaMotte, 2015). This data layer is a modified version of Historic Counties for the 2000 Census of Population and Housing produced by the National Historical Geographic Information System (NHGIS) project, which is identical to the U.S. Census Bureau TIGER/Line Census 2000 file, with the exception of added shorelines. Excluded from the CAO_STCOFIPS boundary layer are Broomfield County, Colorado, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the 3 county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. The census of agriculture was not taken in the District of Columbia for 1959, but available data indicate few if any farms in that area, the polygon was left in place to preserve the areas of the surrounding counties. Baltimore City, Maryland was combined with Baltimore County and the St. Louis City, Missouri, was combined with St. Louis County. La Paz County, Arizona was combined with Yuma County, Arizona and Cibola County, New Mexico was combined with Valencia County, New Mexico. Minor county border changes were at a level of precision beyond the scope of the data collection. A major objective of the census data tabulation is to maintain a reasonable degree of comparability of agricultural data from census to census. The tabular data collection is from 14 different censuses where definitions and data collection techniques may change over time and while the data are mostly comparable, a degree of caution should be exercised when using the data in analysis procedures. While the data are at a county-level resolution, a regional approach is more appropriate than a county-by-county analysis. The main purpose of this layer is to provide a base to generate a county raster for the allocation of agricultural census values to specific (agricultural) pixels. Vector format is provided so the raster pixel size can be user designated. References cited: LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016. National Historical Geographic Information System, Minnesota Population Center, 2004, Historic counties for the 2000 census of population and housing: Minneapolis, MN, University of Minnesota, accessed 03/18/2013 at http://nhgis.org; abstract: This polygon shapefile provides county or county-equivalent boundaries for the conterminous United States and was created specifically for use with the data tables published as Selected Items from the Census of Agriculture for the Conterminous United States, 1950-2012 (LaMotte, 2015). This data layer is a modified version of Historic Counties for the 2000 Census of Population and Housing produced by the National Historical Geographic Information System (NHGIS) project, which is identical to the U.S. Census Bureau TIGER/Line Census 2000 file, with the exception of added shorelines. Excluded from the CAO_STCOFIPS boundary layer are Broomfield County, Colorado, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the 3 county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. The census of agriculture was not taken in the District of Columbia for 1959, but available data indicate few if any farms in that area, the polygon was left in place to preserve the areas of the surrounding counties. Baltimore City, Maryland was combined with Baltimore County and the St. Louis City, Missouri, was combined with St. Louis County. La Paz County, Arizona was combined with Yuma County, Arizona and Cibola County, New Mexico was combined with Valencia County, New Mexico. Minor county border changes were at a level of precision beyond the scope of the data collection. A major objective of the census data tabulation is to maintain a reasonable degree of comparability of agricultural data from census to census. The tabular data collection is from 14 different censuses where definitions and data collection techniques may change over time and while the data are mostly comparable, a degree of caution should be exercised when using the data in analysis procedures. While the data are at a county-level resolution, a regional approach is more appropriate than a county-by-county analysis. The main purpose of this layer is to provide a base to generate a county raster for the allocation of agricultural census values to specific (agricultural) pixels. Vector format is provided so the raster pixel size can be user designated. References cited: LaMotte, A.E., 2015, Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016. National Historical Geographic Information System, Minnesota Population Center, 2004, Historic counties for the 2000 census of population and housing: Minneapolis, MN, University of Minnesota, accessed 03/18/2013 at http://nhgis.org
The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), statistical census subareas (in Alaska), and unorganized territories. For the 2010 Census, MCDs are the primary governmental and/or administrative divisions of counties in 29 states and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD states where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2019, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all statistical county subdivisions (CCDs and census subareas), delineated in 21 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2013, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs, delineated in 21 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.