This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
This dataset represents post-nourishment digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The Lidar DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. The topobathy DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and were created from a combined LAS dataset of lidar data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected October 5-11, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
This dataset is a pre-nourishment digital elevation model (DEM) of the beach topography of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. Lidar data were collected June 24, 2021, using a boat mounted Velodyne VLP-16 unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 foot [ft]) cell size and was created from a LAS dataset of terrestrial light detection and ranging (LiDAR) data with an average point spacing of 0.137 m (0.45 ft). LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019).
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and nearshore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1 meter (m; 3.28084 ft) cell size and was created from Lidar data representing beach topography and sonar data representing bathymetry extending approximately 700-800 m offshore. The data cover an approximately 1.75 square kilometer survey area. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected August 22-23, 2022 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit and methodology similar to that described by Richards and Huizinga (2018). Single-beam sonar data were collected August 23, 2022 using a Ceescope echosounder and methodology similar to that described by Wilson and Richards (2006).This project followed similar methods to that of Wagner, Lund, and Sanks (2020), who completed a similar survey in 2019.
Fugro Horizons Inc. acquired highly accurate Light Detection and Ranging (lidar) elevation data for the Twin Cities metropolitan region in east-central Minnesota in Spring and Fall 2011, with some reflights in Spring 2012. The data cover Anoka, Benton, Carver, Dakota, Goodhue, Hennepin, Isanti, Kanabec, Meeker, Mille Lacs, Morrison, Ramsey, Scott, Sherburne and Washington counties.
Most of the data was collected at 1.5 points/square meter. Smaller areas were collected with 2 points/square meter and with 8 points/square meter:
1. 1.5 points/square meter covers Morrison, Mille Lacs, Benton, Isanti, Sherburne, Anoka, Meeker, Hennepin, Washington, Carver, Scott, and Goodhue counties.
2. 2 points/square meter covers the Dakota Block (southern 2/3 of Dakota County)
3. 8 points/square meter covers portions of Minneapolis/St. Paul and the City of Maple Grove
See map of block boundaries: https://www.mngeo.state.mn.us/chouse/elevation/metro_data_delivery_dates.pdf
Data are in the UTM Zone 15 coordinate system, NAD83 (HARN), NAVD88 Geoid09, meters. The tiling scheme is 16th USGS 1:24,000 quadrangle tiles.
The vendor delivered the data to the Minnesota Department of Natural Resources (DNR) in several formats:
1. One-meter digital elevation model
2. Edge-of-water breaklines
3. Classified LAS formatted point cloud data
DNR staff quality-checked the data and created three additional products: two-foot contours, building outlines and hillshades.
This metadata record was created at the Minnesota Geospatial Information Office using information supplied by the vendor and by DNR.
Geographic Extent: Approximately 11,485 square miles in southwest Minnesota.
MN_RiverWest_1 (Work Unit 300408) - covering approximately 4151 square miles MN_RiverWest_2 (Work Unit 300409) - covering approximately 3170 square miles MN_RiverWest_3 (Work Unit 300410) - covering approximately 4164 square miles
Dataset Description of Original Data: LIDAR-derived binary (.las) files containin...
2-foot and 10-foot elevation contours derived from the Spring 2012 Minnesota Department of Natural Resources (MN DNR) LiDAR dataset.
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
Product: These lidar data are processed Classified LAS 1.4 files, formatted to individual 1000 m x 1000m tiles; used to create intensity images, 3D breaklines, and hydro-flattened DEMs as necessary. Geographic Extent: 8 counties in Minnesota, covering approximately 11,620 total square miles. Counties included are: Beltrami, Cook, Itasca, Koochiching, Lake, Lake of the Woods, Roseau, St.Louis...
The vertical land change activity focuses on the detection, analysis, and explanation of topographic change. These detection techniques include both quantitative methods, for example, using difference metrics derived from multi-temporal topographic digital elevation models (DEMs), such as, light detection and ranging (lidar), National Elevation Dataset (NED), Shuttle Radar Topography Mission (SRTM), and Interferometric Synthetic Aperture Radar (IFSAR), and qualitative methods, for example, using multi-temporal aerial photography to visualize topographic change. The geographic study areas of this activity are in Itasca and St. Louis counties in the northern Minnesota Mesabi Iron Range. Available multi-temporal lidar, NED, SRTM, IFSAR, and other topographic elevation datasets, as well as aerial photography and multi-spectral image data were identified and downloaded for these study area counties. Mining (vector) features were obtained from the Minnesota Department of Natural Resources and St. Louis Government Services Center. These features were used to spatially locate the study areas within Itasca and St. Louis counties. Previously developed differencing methods (Gesch, 2006) were used to develop difference raster datasets of NED/SRTM (1947-2000 date range) and SRTM/IFSAR (2000-2008 date range). The difference rasters were evaluated to exclude difference values that were below a specified vertical change threshold, which was applied spatially by National Land Cover Dataset (NLCD) 1992 and 2006 land cover type, respectively. This spatial application of the vertical change threshold values improved the overall ability to detect vertical change because threshold values in bare earth areas were distinguished from threshold values in heavily vegetated areas.High-resolution (1-3 m) DEMs, generated from lidar point cloud data, were acquired for Itasca and St. Louis counties in Minnesota from the Minnesota Department of Natural Resources. ESRI Mosaic Datasets were generated from lidar point-cloud data and available topographic DEMs for the specified study areas. These data were analyzed to estimate volumetric changes on the land surface at three different periods with lidar acquisitions occurring for Itasca County between April 5, 2012 to April 28, 2012 and St. Louis County between May 3, 2011 to June 1, 2011. A recent difference raster dataset time span (2007-2012 date range) was analyzed by differencing the Minnesota lidar-derived DEMs and an IFSAR-derived dataset. The IFSAR-derived data were resampled to the resolution of the lidar DEM (approximately 1-m resolution) and compared with the lidar-derived DEM. Land cover based threshold values were applied spatially to detect vertical change using the lidar/IFSAR difference dataset. Itasca County included metadata describing vertical root mean square error (RMSE) values for different land cover types. This allowed additional refinement of the spatially explicit threshold values. A single RMSE value was used for St. Louis County because RMSE values for land cover types were not provided.References: Gesch, Dean B., 2006, An inventory and assessment of significant topographic changes in the United States Brookings, S. Dak., South Dakota State University, Ph.D. dissertation, 234 p, at https://topotools.cr.usgs.gov/pdfs/DGesch_dissertation_Nov2006.pdf.
Digital Elevation Model of Scott County, Minnesota.
The Minnesota Department of Natural Resources contracted with Sanborn Map Co., Inc. to provide lidar (Light Detection and Ranging) mapping services for the South Dakota portion of the Minnesota River Basin. Utilizing multi-return systems, lidar data in the form of 3-dimensional positions of a dense set of mass points was collected for approximately 1,946 square miles.
The vendor delivered the data to the DNR in several formats:
1) One-meter digital elevation model
2) Edge-of-water breaklines
3) Classified LAS formatted point cloud data
DNR staff created three additional products: two-foot contours, building outlines and hillshades.
The data are in UTM Zone 14 coordinates.
This metadata record was created at the Minnesota Geospatial Information Office by combining information supplied by Sanborn and the DNR.
Product: Processed, classified lidar point cloud data tiles in LAS 1.4 format. Geographic Extent: This dataset covers approximately 5847 square miles in southeast Minnesota and consists of 3 deliveries or blocks. MN_SEDriftless_1 (Work Unit 228969) - Approximately 1,741 square miles in southeast Minnesota, including Dakota, Dodge, Freeborn, Mower, Rice, Scott, Steele, and Waseca counties MN...
The lidar data for Crow Wing County was collected under contract by the county. Thus, the data format is not entirely consistent with some of the other lidar data collected by the State of Minnesota. Specifically, the Crow Wing County collect required classification of only Bare Earth in the lidar LAS files, so there is no information on buildings, vegetation, or model key points.
Breaklines captured as part of this effort are also a bit different. In Crow Wing County the breaklines are 3D Polyline features rather than 3D Polygon features. They also include road centerlines, stream courses and other features that are not part of the Statewide collect specifications. However, the breaklines do not have z-values associated with them so the DEMs have not been hydro-flattened.
This metadata record was created at the Minnesota Geospatial Information Office by combining information supplied by Merrick & Company, Crow Wing County, and the Minnesota Department of Natural Resources.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains a collection of features that describe the physical terrain.
Geographic Extent: Approximately 11,485 square miles in southwest Minnesota.
MN_RiverWest_1 (Work Unit 300408) - covering approximately 4151 square miles MN_RiverWest_2 (Work Unit 300409) - covering approximately 3170 square miles MN_RiverWest_3 (Work Unit 300410) - covering approximately 4164 square miles
Dataset Description of Original Data: A half-meter (0.5m) cell size Digital Eleva...
This dataset is comprised of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (lidar) data representing the beach topography and sonar data representing near-shore bathymetry of Lake Superior at Minnesota Point, near the Duluth entry, Duluth, Minnesota. The point data are the same as that in LAS files that were used to create the digital elevation models (DEMs) of the approximate 1.75 square kilometer survey area. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected August 22-23, 2022 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit and methodology similar to that described by Richards and Huizinga (2018). Single-beam sonar data were collected August 23, 2022 using a Ceescope echosounder and methodology similar to that described by Wilson and Richards (2006).This project followed similar methods to that of Wagner, Lund, and Sanks (2020), who completed a similar survey in 2019.
This dataset contains LiDAR-derived elevation products for the Minnesota portion of the Red River of the North Basin. The Minnesota Department of Natural Resources (DNR) processed the data to make it consistent with other LiDAR data available in Minnesota, including converting it to UTM Zone 15 coordinates and tiling to 3.25 square mile blocks based on 1/16 of a standard USGS 1:24,000 quadrangle.
Data covers the following Minnesota counties: Becker, Beltrami, Big Stone, Clay, Clearwater, Grant, Kittson, Koochiching (northern portion), Lake of the Woods, Mahnomen, Marshall, Norman, Otter Tail, Pennington, Polk, Red Lake, Roseau, Stevens, Traverse, Wilkin. Products included are: One- and three-meter DEMs, one- and three-meter hillshades, and two-foot contours, plus a tile index map for each county. Since breaklines were not available for all of the Minnesota portion of the basin, the data has not been hydro-flattened.
The original data was provided by the International Water Institute (IWI) and the United States Geological Survey. IWI's Red River Basin Mapping Initiative acquired a highly accurate digital elevation model (DEM) for the Red River of the North Basin south of the U.S./Canada border in UTM Zone 14 coordinates.
Note: This metadata record was created at the Minnesota Geospatial Information Office by combining information from the IWI and DNR.
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.