Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image.
It is a good database for people who want to try learning techniques and pattern recognition methods on real-world data while spending minimal efforts on preprocessing and formatting.
train
set split to provide 80% of its images to the training set and 20% of its images to the validation settrain
set split to provide 80% of its images to the training set and 20% of its images to the validation set0
, 1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
, 9
to one
, two
, three
, four
, five
, six
, seven
, eight
, nine
train
(86% of images - 60,000 images) set and test
(14% of images - 10,000 images) set only.@article{lecun2010mnist,
title={MNIST handwritten digit database},
author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
volume={2},
year={2010}
}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fashion-MNIST
is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST
to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.
* Source
Here's an example of how the data looks (each class takes three-rows):
https://github.com/zalandoresearch/fashion-mnist/raw/master/doc/img/fashion-mnist-sprite.png" alt="Visualized Fashion MNIST dataset">
train
(86% of images - 60,000 images) set and test
(14% of images - 10,000 images) set only.train
set split to provide 80% of its images to the training set and 20% of its images to the validation set@online{xiao2017/online,
author = {Han Xiao and Kashif Rasul and Roland Vollgraf},
title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
date = {2017-08-28},
year = {2017},
eprintclass = {cs.LG},
eprinttype = {arXiv},
eprint = {cs.LG/1708.07747},
}
MedMNIST v2 is a large-scale MNIST-like collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into 28 x 28 (2D) or 28 x 28 x 28 (3D) with the corresponding classification labels, so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various data scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression and multi-label). The resulting dataset, consisting of 708,069 2D images and 10,214 3D images in total, could support numerous research / educational purposes in biomedical image analysis, computer vision and machine learning.
Description and image from: MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification
Each subset keeps the same license as that of the source dataset. Please also cite the corresponding paper of source data if you use any subset of MedMNIST.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
A simple audio/speech dataset consisting of recordings of spoken digits in wav
files at 8kHz. The recordings are trimmed so that they have near minimal silence at the beginnings and ends.
FSDD is an open dataset, which means it will grow over time as data is contributed. In order to enable reproducibility and accurate citation the dataset is versioned using Zenodo DOI as well as git tags
.
Files are named in the following format:
{digitLabel}_{speakerName}_{index}.wav
Example: 7_jackson_32.wav
Please contribute your homemade recordings. All recordings should be mono 8kHz wav
files and be trimmed to have minimal silence. Don't forget to update metadata.py
with the speaker meta-data.
To add your data, follow the recording instructions in acquire_data/say_numbers_prompt.py
and then run split_and_label_numbers.py
to make your files.
metadata.py
contains meta-data regarding the speakers gender and accents.
trimmer.py
Trims silences at beginning and end of an audio file. Splits an audio file into multiple audio files by periods of silence.
fsdd.py
A simple class that provides an easy to use API to access the data.
spectogramer.py
Used for creating spectrograms of the audio data. Spectrograms are often a useful pre-processing step.
The test set officially consists of the first 10% of the recordings. Recordings numbered 0-4
(inclusive) are in the test and 5-49
are in the training set.
Did you use FSDD in a paper, project or app? Add it here! * https://github.com/Jakobovski/decoupled-multimodal-learning * https://adhishthite.github.io/sound-mnist/ by Adhish Thite (https://adhishthite.github.io/)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multi-Domain Outlier Detection Dataset contains datasets for conducting outlier detection experiments for four different application domains:
Astrophysics - detecting anomalous observations in the Dark Energy Survey (DES) catalog (data type: feature vectors)
Planetary science - selecting novel geologic targets for follow-up observation onboard the Mars Science Laboratory (MSL) rover (data type: grayscale images)
Earth science: detecting anomalous samples in satellite time series corresponding to ground-truth observations of maize crops (data type: time series/feature vectors)
Fashion-MNIST/MNIST: benchmark task to detect anomalous MNIST images among Fashion-MNIST images (data type: grayscale images)
Each dataset contains a "fit" dataset (used for fitting or training outlier detection models), a "score" dataset (used for scoring samples used to evaluate model performance, analogous to test set), and a label dataset (indicates whether samples in the score dataset are considered outliers or not in the domain of each dataset).
To read more about the datasets and how they are used for outlier detection, or to cite this dataset in your own work, please see the following citation:
Kerner, H. R., Rebbapragada, U., Wagstaff, K. L., Lu, S., Dubayah, B., Huff, E., Lee, J., Raman, V., and Kulshrestha, S. (2022). Domain-agnostic Outlier Ranking Algorithms (DORA)-A Configurable Pipeline for Facilitating Outlier Detection in Scientific Datasets. Under review for Frontiers in Astronomy and Space Sciences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The left side of each ‘-’ represents the Top1 result, and the right side of each ‘-’ represents the AUROC result.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image.
It is a good database for people who want to try learning techniques and pattern recognition methods on real-world data while spending minimal efforts on preprocessing and formatting.
train
set split to provide 80% of its images to the training set and 20% of its images to the validation settrain
set split to provide 80% of its images to the training set and 20% of its images to the validation set0
, 1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
, 9
to one
, two
, three
, four
, five
, six
, seven
, eight
, nine
train
(86% of images - 60,000 images) set and test
(14% of images - 10,000 images) set only.@article{lecun2010mnist,
title={MNIST handwritten digit database},
author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
volume={2},
year={2010}
}