2 datasets found
  1. Z

    Model Zoo: A Dataset of Diverse Populations of Neural Network Models - MNIST...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Borth, Damian (2022). Model Zoo: A Dataset of Diverse Populations of Neural Network Models - MNIST [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6632086
    Explore at:
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Borth, Damian
    Giró-i-Nieto, Xavier
    Taskiran, Diyar
    Knyazev, Boris
    Schürholt, Konstantin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

    Dataset

    This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from MNIST. All zoos with extensive information and code can be found at www.modelzoos.cc.

    This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "mnist_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.

    For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

  2. P

    Colored MNIST Dataset

    • paperswithcode.com
    • opendatalab.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Arjovsky; Léon Bottou; Ishaan Gulrajani; David Lopez-Paz, Colored MNIST Dataset [Dataset]. https://paperswithcode.com/dataset/colored-mnist
    Explore at:
    Authors
    Martin Arjovsky; Léon Bottou; Ishaan Gulrajani; David Lopez-Paz
    Description

    Colored MNIST is a synthetic binary classification task derived from MNIST.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Borth, Damian (2022). Model Zoo: A Dataset of Diverse Populations of Neural Network Models - MNIST [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6632086

Model Zoo: A Dataset of Diverse Populations of Neural Network Models - MNIST

Explore at:
Dataset updated
Jun 13, 2022
Dataset provided by
Borth, Damian
Giró-i-Nieto, Xavier
Taskiran, Diyar
Knyazev, Boris
Schürholt, Konstantin
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Abstract

In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

Dataset

This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from MNIST. All zoos with extensive information and code can be found at www.modelzoos.cc.

This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "mnist_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.

For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

Search
Clear search
Close search
Google apps
Main menu