100+ datasets found
  1. d

    Advertising Data | Auction, Bids & Wins Data from Mobile, TV, & Advertising...

    • datarade.ai
    .csv, .json
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dappier (2024). Advertising Data | Auction, Bids & Wins Data from Mobile, TV, & Advertising | 150 billion+ monthly Real Time Bidding Data [Dataset]. https://datarade.ai/data-products/advertising-data-auction-bids-wins-data-from-mobile-tv-dappier
    Explore at:
    .csv, .jsonAvailable download formats
    Dataset updated
    Nov 27, 2024
    Dataset authored and provided by
    Dappier
    Area covered
    United Republic of, Djibouti, Mozambique, Botswana, Uganda, Croatia, Tuvalu, Togo, Mongolia, Sierra Leone
    Description

    Adveritising data and real time bidding data from multiple screens (TV, mobile, and web) and detailed performance metrics that span impressions, clicks, geographic data, view-ability, and demographic targeting. Our dataset ensures high accuracy, derived from a proprietary advertising technology platform trusted by leading brands and agencies to deliver cross-platform campaigns.

    This dataset includes key metrics from ad auctions, bids & wins such as: -impressions -geographic data -clicks -viewability -demographic targeting -click-through rates (CTR)

    How is the data generally sourced?

    This dataset is sourced from auction-level insights, tracking bids, wins, and performance metrics across major ad exchanges and programmatic platforms. Data collection adheres to strict compliance standards, ensuring transparency and reliability.

    What are the primary use cases or verticals of this Data Product?

    Primary use cases include:

    Predictive analytics: Build models to forecast campaign success.

    Audience segmentation: Create more personalized and targeted ad experiences.

    Campaign optimization: Optimize ad placement, timing, and performance.

    Ad personalization: Drive engagement by tailoring ads to demographic and geographic audiences.

    Industries served include advertising, media, retail, and e-commerce, with applicability in both programmatic and direct ad placements.

    Advertising Data is a key component of our comprehensive data suite, designed to empower companies and marketers with actionable insights. Enables a holistic view of the advertising ecosystem, helping clients achieve higher ROI and better campaign outcomes.

  2. 📣 Ad Click Prediction Dataset

    • kaggle.com
    Updated Sep 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ciobanu Marius (2024). 📣 Ad Click Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/marius2303/ad-click-prediction-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 7, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ciobanu Marius
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    About

    This dataset provides insights into user behavior and online advertising, specifically focusing on predicting whether a user will click on an online advertisement. It contains user demographic information, browsing habits, and details related to the display of the advertisement. This dataset is ideal for building binary classification models to predict user interactions with online ads.

    Features

    • id: Unique identifier for each user.
    • full_name: User's name formatted as "UserX" for anonymity.
    • age: Age of the user (ranging from 18 to 64 years).
    • gender: The gender of the user (categorized as Male, Female, or Non-Binary).
    • device_type: The type of device used by the user when viewing the ad (Mobile, Desktop, Tablet).
    • ad_position: The position of the ad on the webpage (Top, Side, Bottom).
    • browsing_history: The user's browsing activity prior to seeing the ad (Shopping, News, Entertainment, Education, Social Media).
    • time_of_day: The time when the user viewed the ad (Morning, Afternoon, Evening, Night).
    • click: The target label indicating whether the user clicked on the ad (1 for a click, 0 for no click).

    Goal

    The objective of this dataset is to predict whether a user will click on an online ad based on their demographics, browsing behavior, the context of the ad's display, and the time of day. You will need to clean the data, understand it and then apply machine learning models to predict and evaluate data. It is a really challenging request for this kind of data. This data can be used to improve ad targeting strategies, optimize ad placement, and better understand user interaction with online advertisements.

  3. o

    Data from: Google Play Store Dataset

    • opendatabay.com
    .undefined
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Google Play Store Dataset [Dataset]. https://www.opendatabay.com/data/premium/33624898-8133-421d-9b3b-42f76e1e4fe2
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Website Analytics & User Experience
    Description

    Google Play Store dataset to explore detailed information about apps, including ratings, descriptions, updates, and developer details. Popular use cases include app performance analysis, market research, and consumer behavior insights.

    Use our Google Play Store dataset to explore detailed information about apps available on the platform, including app titles, developers, monetization features, user ratings, reviews, and more. This dataset also includes data on app descriptions, safety measures, download counts, recent updates, and compatibility, providing a complete overview of app performance and features.

    Tailored for app developers, marketers, and researchers, this dataset offers valuable insights into user preferences, app trends, and market dynamics. Whether you're optimizing app development, conducting competitive analysis, or tracking app performance, the Google Play Store dataset is an essential resource for making data-driven decisions in the mobile app ecosystem.

    Dataset Features

    • url: The URL link to the app’s detail page on the Google Play Store.
    • title: The name of the application.
    • developer: The developer or company behind the app.
    • monetization_features: Information regarding how the app generates revenue (e.g., in-app purchases, ads).
    • images: Links or references to images associated with the app.
    • about: Details or a summary description of the app.
    • data_safety: Information regarding data safety and privacy practices.
    • rating: The overall rating of the app provided by its users.
    • number_of_reviews: The total count of user reviews received.
    • star_reviews: A breakdown of reviews by star ratings.
    • reviews: Reviews and user feedback about the app.
    • what_new: Information on the latest updates or features added to the app.
    • more_by_this_developer: Other apps by the same developer.
    • content_rating: The content rating which guides suitability based on user age.
    • downloads: The download count or range indicating the app’s popularity.
    • country: The country associated with the app listing.
    • app_category: The category or genre under which the app is classified.

    Distribution

    • Data Volume: 17 Columns and 65.54M Rows
    • Format: CSV

    Usage

    This dataset is ideal for a variety of applications:

    • App Market Analysis: Enables market researchers to extract insights on app popularity, engagement, and trends across different categories.
    • Machine Learning: Can be used by data scientists to build recommendation engines or sentiment analysis models based on app review data.
    • User Behavior Studies: Facilitates academic or industrial research into user preferences and behavior with respect to mobile applications.

    Coverage

    • Geographic Coverage: global.

    License

    CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement

    Who Can Use It

    • Data Scientists: To train machine learning models for app popularity prediction, sentiment analysis, or recommendation systems.
    • Researchers: For academic or scientific studies into market trends, consumer behavior, and app performance analysis.
    • Businesses: For strategic analysis, developing market insights, or enhancing app development and user engagement strategies.

    Suggested Dataset Name

    1. Play store Insights
    2. Android App Scope
    3. Market Analytics
    4. Play Store Metrics Vault

    5. AppTrend360: Google Play Edition

    Pricing

    Based on Delivery frequency

    ~Up to $0.0025 per record. Min order $250

    Approximately 10M new records are added each month. Approximately 13.8M records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.

    • Monthly

    New snapshot each month, 12 snapshots/year Paid monthly

    • Quarterly

    New snapshot each quarter, 4 snapshots/year Paid quarterly

    • Bi-annual

    New snapshot every 6 months, 2 snapshots/year Paid twice-a-year

    • One-time purchase

    New snapshot one-time delivery Paid once

  4. Phones Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Phones Dataset [Dataset]. https://brightdata.com/products/datasets/phones
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 12, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    We will create a customized phones dataset tailored to your specific requirements. Data points may include brand names, model specifications, pricing information, release dates, market availability, feature sets, and other relevant metrics.

    Utilize our phones datasets for a variety of applications to boost strategic planning and market analysis. Analyzing these datasets can help organizations grasp consumer preferences and technological trends within the mobile phone industry, allowing for more precise product development and marketing strategies. You can choose to access the complete dataset or a customized subset based on your business needs.

    Popular use cases include: enhancing competitive benchmarking, identifying pricing trends, and optimizing product portfolios.

  5. Marketing Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Marketing Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/marketing-analytics-market-global-industry-analysis
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Marketing Analytics Market Outlook



    According to our latest research, the global marketing analytics market size in 2024 stands at USD 5.8 billion, demonstrating robust momentum driven by the increasing adoption of data-driven decision-making across industries. The market is projected to register a CAGR of 13.2% from 2025 to 2033, reaching an estimated market size of USD 17.1 billion by 2033. This accelerated growth is primarily attributed to the proliferation of digital channels, the surge in big data, and the imperative for organizations to achieve higher ROI from their marketing investments. The marketing analytics market is evolving rapidly, with advanced analytics tools enabling businesses to gain actionable insights, optimize campaigns, and enhance customer engagement across diverse sectors.




    One of the most significant growth factors for the marketing analytics market is the exponential increase in data generation from multiple digital touchpoints. The rise of omnichannel marketing strategies has resulted in vast and complex datasets, encompassing customer interactions from social media, websites, mobile applications, and email campaigns. Businesses are increasingly leveraging marketing analytics solutions to aggregate, process, and analyze this data in real time, gaining deeper insights into customer behavior, preferences, and purchase patterns. The ability to transform raw data into actionable intelligence is empowering marketers to personalize campaigns, improve targeting accuracy, and maximize conversion rates, thereby fueling the demand for sophisticated analytics platforms.




    Another critical driver is the growing emphasis on measuring marketing effectiveness and optimizing marketing spend. As organizations face mounting pressure to justify marketing budgets and demonstrate tangible ROI, marketing analytics tools have become indispensable. These solutions enable marketers to track key performance indicators (KPIs), attribute revenue to specific channels, and identify underperforming campaigns. The integration of artificial intelligence and machine learning into marketing analytics platforms is further enhancing predictive capabilities, allowing businesses to forecast trends, automate campaign adjustments, and refine customer segmentation. This technological evolution is driving widespread adoption across both large enterprises and small and medium businesses.




    The surge in regulatory requirements and data privacy concerns is also shaping the marketing analytics market. With the implementation of stringent data protection regulations such as GDPR and CCPA, organizations are compelled to adopt analytics solutions that ensure compliance while maintaining data integrity and security. Modern marketing analytics platforms are incorporating advanced data governance features, encryption, and anonymization techniques, enabling businesses to harness the power of analytics without compromising customer trust. This focus on compliance, coupled with the increasing need for transparency in marketing practices, is accelerating the adoption of analytics tools across regulated industries such as BFSI and healthcare.




    Regionally, North America dominates the marketing analytics market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The United States, in particular, is at the forefront due to the presence of major analytics vendors, high digital adoption, and substantial marketing expenditure by enterprises. However, the Asia Pacific region is poised for the fastest growth over the forecast period, driven by rapid digital transformation, expanding e-commerce ecosystems, and increasing investments in marketing technology. Latin America and the Middle East & Africa are also witnessing steady growth as organizations in these regions recognize the strategic value of data-driven marketing.





    Component Analysis



    The marketing analytics market is segmented by component into software and services, each playing a vital role in the overall ecosystem. The software segment dominates th

  6. u

    70+ Must Know Advertising Industry Statistics 2025

    • upmetrics.co
    webpage
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Upmetrics (2023). 70+ Must Know Advertising Industry Statistics 2025 [Dataset]. https://upmetrics.co/blog/advertising-industry-statistics
    Explore at:
    webpageAvailable download formats
    Dataset updated
    Dec 6, 2023
    Dataset authored and provided by
    Upmetrics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    A comprehensive dataset providing insights into the advertising industry for 2025, highlighting global advertising spending, digital and traditional marketing trends, the influence of social media advertising, mobile ad growth, advertising impact on consumer behavior, and the rise of programmatic advertising.

  7. d

    B2C Contact Data | 230M US Contact Data Set | Consumer Data | Email Address...

    • datarade.ai
    .csv, .xls
    Updated Feb 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (2024). B2C Contact Data | 230M US Contact Data Set | Consumer Data | Email Address Data | Phone Number Data [Dataset]. https://datarade.ai/data-products/b2c-continuum-from-solution-publishing-230m-us-b2c-contact-solution-publishing
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 18, 2024
    Dataset authored and provided by
    Allforce
    Area covered
    United States of America
    Description

    Solution Publishing by Allforce unlocks the full potential of consumer marketing engineered to enhance your consumer marketing efforts, providing a robust foundation for personalized and effective campaigns.

    Key Features of the Product:

    Extensive B2C Contact Information: Access comprehensive contact details for over 230 million US consumers. This extensive database covers a wide demographic, offering numerous opportunities for targeted outreach.

    Multifaceted Contact Options: Equipped with data fields including Email, Postal Addresses, Phone Numbers, and Mobile Phones.

    Demographic Insights: Detailed demographic data including Age, Income, Gender, Household Income, Net Worth, Marital Status, Children, Homeowner, Job Details and more allows for precision targeting, ensuring your marketing messages resonate with the right audience.

    Mobile Advertising IDs (MAIDs): With MAIDs available, engage in precise mobile device targeting, enhancing your mobile marketing strategies and connecting with consumers on their most personal devices.

    Benefits: Precision Targeting: Leverage detailed demographic information to tailor your marketing strategies, ensuring high relevance and engagement.

    Enhanced Consumer Reach: With a plethora of contact options at your disposal, reach consumers across multiple touch points, increasing the effectiveness of your outreach efforts.

    Tailored Messaging: Use detailed consumer insights to craft messages that speak directly to the interests and needs of your target audience, boosting conversion rates.

    Strategic Marketing Campaigns: Empower your marketing teams with data that supports strategic planning and execution, enabling campaigns that are both impactful and efficient.

    Data-Driven Consumer Insights: Harness the power of a comprehensive B2C database to inform your marketing decisions, driving strategies that are informed by real-world consumer data.

    Solution Publishing by Allforce is more than just a data product—it's a vital tool that transforms the landscape of consumer engagement, allowing businesses to connect with their audience more effectively and personally.

  8. Mobile_usage_dataset_individual_person

    • kaggle.com
    Updated Mar 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    arul08 (2020). Mobile_usage_dataset_individual_person [Dataset]. https://www.kaggle.com/arul08/mobile-usage-dataset-individual-person/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 14, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    arul08
    Description

    Do you know?

    Do you know how much time you spend on an app? Do you know the total use time of a day or average use time of an app?

    What it consists of?

    This data set consists of - how many times a person unlocks his phone. - how much time he spends on every app on every day. - how much time he spends on his phone.

    It lists the usage time of apps for each day.

    What we can do?

    Use the test data to find the Total Minutes that we can use the given app in a day. we can get a clear stats of apps usage. This data set will show you about the persons sleeping behavior as well as what app he spends most of his time. with this we can improve the productivity of the person.

    The dataset was collected from the app usage app.

  9. o

    Smartphone Customer Satisfaction Data

    • opendatabay.com
    .undefined
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Smartphone Customer Satisfaction Data [Dataset]. https://www.opendatabay.com/data/ai-ml/4451c1a3-be22-408f-9509-93c5894cba09
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    E-commerce & Online Transactions
    Description

    This synthetic yet realistic dataset offers insights into smartphone features, customer reviews, and sales data. It includes over 90 customer reviews for six popular smartphone models from leading brands such as Apple, Samsung, and Google. The dataset is designed to help understand how various product specifications influence purchasing decisions and overall customer satisfaction. It combines detailed product specifications, customer star ratings, review texts, and verified purchase status with estimated sales figures per model.

    Columns

    • model_id (Integer): A unique identifier for each distinct phone model.
    • brand (String): The manufacturer of the phone (e.g., "Apple", "Samsung", "Google").
    • model_name (String): The specific name of the phone model (e.g., "iPhone 15").
    • price (Integer): The retail price of the phone in USD.
    • screen_size (Float): The diagonal screen size of the phone in inches.
    • battery (Integer): The battery capacity of the phone in mAh.
    • camera_main (String): The resolution of the phone's main camera (e.g., "48MP").
    • ram (Integer): The amount of RAM (Random Access Memory) in GB.
    • storage (Integer): The internal storage capacity in GB.
    • has_5g (Boolean): Indicates whether the phone model supports 5G connectivity (TRUE/FALSE).
    • water_resistant (String): The water resistance rating, if any (e.g., "IP68" or "None").
    • units_sold (Integer): An estimated number of units sold for market analysis purposes.
    • review_id (Integer): A unique identifier for each customer review.
    • user_name (String): A randomly generated name for the reviewer.
    • star_rating (Integer): The customer's rating, ranging from 1 (worst) to 5 (best).
    • verified_purchase (Boolean): Indicates whether the reviewer's purchase was verified (TRUE/FALSE).
    • review_date (Date): The date when the review was submitted, in YYYY-MM-DD format (e.g., "2023-05-10").
    • review_text (String): Simulated text of the customer's review, based on features and rating (e.g., "The 48MP camera is amazing!").

    Distribution

    The dataset is typically provided in a CSV file format. It comprises over 90 customer review records, along with corresponding smartphone product specifications and sales data for 6 distinct phone models. The exact total number of rows or the specific file size in MB/GB is not specified.

    Usage

    This dataset is ideal for various analytical applications, including: * Feature importance analysis: Determining which smartphone specifications (e.g., battery life, camera quality) most significantly influence customer ratings and purchasing decisions. * Sentiment analysis: Applying Natural Language Processing (NLP) techniques to extract insights and sentiment from customer review texts. * Pricing strategy optimisation: Analysing the correlation between price and customer satisfaction or sales volume. * Market research: Comparing performance and customer perception across different brands (e.g., Apple vs. Samsung vs. Google) and models. * Sales vs. features correlation: Investigating how product features and pricing impact estimated units sold.

    Coverage

    This dataset has a Global region coverage. It includes data pertaining to six smartphone models from three major brands: Apple (iPhone 14, iPhone 15), Samsung (Galaxy S22, Galaxy S23), and Google (Pixel 7, Pixel 8). The review dates are indicative of data from around 2023. While it includes customer reviews, specific demographic details of the reviewers are not available beyond randomly generated usernames. As a synthetic dataset, it is designed to be realistic for general market analysis.

    License

    CC0

    Who Can Use It

    This dataset is suitable for: * Data Analysts and Scientists: For performing regression analysis, sentiment analysis, and predictive modelling. * Marketing Professionals: To understand consumer preferences, optimise product features, and refine marketing strategies. * Product Managers: To inform product development, feature prioritisation, and competitive analysis. * Market Researchers: To study market trends, brand comparisons, and consumer behaviour in the smartphone industry. * Academics and Students: For educational purposes and research projects related to consumer electronics, e-commerce, and data analysis.

    Dataset Name Suggestions

    • Smartphone Customer Satisfaction Data
    • Mobile Phone Market & Reviews Dataset
    • Consumer Electronics Feature Analysis
    • Smartphone Product Performance
    • Mobile Device Sales and Reviews

    Attributes

    Original Data Source: Smartphone Feature Optimization (Marketing Mix)

  10. Data from: Apple App Store Dataset

    • opendatabay.com
    .other
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Apple App Store Dataset [Dataset]. https://www.opendatabay.com/data/premium/cd5a7748-e9da-4d59-96cd-96a0c95f7994
    Explore at:
    .otherAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    Area covered
    Website Analytics & User Experience
    Description

    Apple App Store dataset to explore detailed information on app popularity, user feedback, and monetization features. Popular use cases include market trend analysis, app performance evaluation, and consumer behavior insights in the mobile app ecosystem.

    Use our Apple App Store dataset to gain comprehensive insights into the mobile app ecosystem, including app popularity, user ratings, monetization features, and user feedback. This dataset covers various aspects of apps, such as descriptions, categories, and download metrics, offering a full picture of app performance and trends.

    Tailored for marketers, developers, and industry analysts, this dataset allows you to track market trends, identify emerging apps, and refine promotional strategies. Whether you're optimizing app development, analyzing competitive landscapes, or forecasting market opportunities, the Apple App Store dataset is an essential tool for making data-driven decisions in the ever-evolving mobile app industry.

    Dataset Features

    • url: The URL linking to the app’s page on the Apple App Store.
    • title: The name of the app.
    • sub_title: A brief subtitle or tagline for the app.
    • developer: The name of the entity or individual that developed the app.
    • top_charts: Indicates if the app appears in top charts.
    • monetization_features: Information on monetization aspects (such as in-app purchases or advertisements).
    • image: A reference to the main app image.
    • screenshots: Contains screenshot images of the app.
    • description: Detailed app description outlining main features.
    • what_new: Details on the latest updates or new features.
    • rating: The overall rating based on user reviews.
    • number_of_raters: The total number of users who have rated the app.
    • reviews_by_stars: Breakdown of the number of reviews by star rating.
    • reviews: An aggregation of user reviews.
    • events: Any associated events or promotions.
    • data_linked_to_you: Indicates if any data is linked to the user.
    • seller: The entity responsible for selling or distributing the app.
    • category: The category or genre of the app.
    • languages: Languages supported by the app.
    • copyright: Copyright information provided by the developer.
    • size: The file size of the app.
    • compatibility: Device or OS compatibility details.
    • age_rating: The recommended age rating for the app.
    • price: The price of the app.
    • In_app_purchases: Details on in-app purchase options.
    • support: Information related to app support.
    • more_by_this_developer: Suggestions for other apps by the same developer.
    • you_might_also_like: Recommendations for similar apps.
    • app_support: Additional support details.
    • privacy_policy: Link or reference to the app’s privacy policy.
    • developer_website: The website of the app developer.
    • featured_in: Information on any features or showcases the app has being part of.
    • country: The country from which the app’s data was sourced.
    • timestamp: A timestamp indicating when the data record was last updated.
    • latest_app_version: The most recent version of the app available.
    • app_id: A unique identifier for the app.

    Distribution

    • Data Volume: 36 Columns and 68M Rows
    • Format: CSV

    Usage

    This dataset is versatile and can be used for various applications: - Market Analysis: Analyze app pricing strategies, monetization features, and category distribution to understand market trends and opportunities in the App Store. This can help developers and businesses make informed decisions about their app development and pricing strategies. - User Experience Research: Study the relationship between app ratings, number of reviews, and app features to understand what drives user satisfaction. The detailed review data and ratings can provide insights into user preferences and pain points. - Competitive Intelligence: Track and analyze apps within specific categories, comparing features, pricing, and user engagement metrics to identify successful patterns and market gaps. Particularly useful for developers planning new apps or improving existing ones. - Performance Prediction: Build predictive models using features like app size, category, pricing, and language support to forecast potential app success metrics. This can help in making data-driven decisions during app development. - Localization Strategy: Analyze the languages supported and regional performance to inform decisions about app localization and international market expansion.

    Coverage

    • Geographic Coverage: Global

    License

    CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement

    Who Can Use It

    • Data Scientists: Can leverage this dataset for training machine learning algorithms and building predictive models concerning app tr
  11. RICO dataset

    • kaggle.com
    Updated Dec 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onur Gunes (2021). RICO dataset [Dataset]. https://www.kaggle.com/onurgunes1993/rico-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Onur Gunes
    Description

    Context

    Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.

    Content

    Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.

    Acknowledgements

    UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico

    Inspiration

    The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.

  12. m

    Factori Audience | 1.2B unique mobile users in APAC, EU, North America and...

    • app.mobito.io
    Updated Dec 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Factori Audience | 1.2B unique mobile users in APAC, EU, North America and MENA [Dataset]. https://app.mobito.io/data-product/audience-data
    Explore at:
    Dataset updated
    Dec 24, 2022
    Area covered
    AFRICA, OCEANIA, SOUTH_AMERICA, ASIA, EUROPE, NORTH_AMERICA
    Description

    We collect, validate, model, and segment raw data signals from over 900+ sources globally to deliver thousands of mobile audience segments. We then combine that data with other public and private data sources to derive interests, intent, and behavioral attributes. Our proprietary algorithms then clean, enrich, unify and aggregate these data sets for use in our products. We have categorized our audience data into consumable categories such as interest, demographics, behavior, geography, etc. Audience Data Categories:Below mentioned data categories include consumer behavioral data and consumer profiles (available for the US and Australia) divided into various data categories. Brand Shoppers:Methodology: This category has been created based on the high intent of users in terms of their visits to Brand outlets in the real world. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. Place Category Visitors:Methodology: This category has been created based on the high intent of users visiting specific places of interest in the real world. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. Demographics:This category has been created based on deterministic data that we receive from apps based on the declared gender and age data. Marital Status, Education, Party affiliation, and State residency are available in the US. Geo-Behavioural:This category has been created based on the high intent of users in terms of the frequency of their visits to specific granular places of interest in the real world. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. Interests:This segment is created based on users' interest in a specific subject while browsing the internet when the visited website category is clearly focused on a specific subject such as cars, cooking, traveling, etc. We use a deterministic model to assign a proper profile and time that information is valid. The recency of data can range from 14 to 30 days, depending on the topic. Intent:Factori receives data from many partners to deliver high-quality pieces of information about users’ shopping intent. We collect data from sources connected to the eCommerce sector and we also receive data connected to online transactions from affiliate networks to deliver the most accurate segments with purchase intentions, such as laptops, mobile phones, or cars. The recency of data can range from 7 to 14 days depending on the product category. Events:This category was created based on the high interest of users in terms of content related to specific global events - sports, culture, and gaming. Among the event segments, we also distinguish categories related to the interest in certain lifestyle choices and behaviors. To create segments containing users with a high-affinity index, we use a precise determination of the number of occurrences at a given time. App Usage:Mobile category is a branch of the taxonomy that is dedicated only to the data that is based on mobile advertising IDs. It is based on the categorization of the mobile apps that the user has installed on the device. Auto Ownership:Consumer Profiles - Available for US and AustraliaThis audience has been created based on users declaring that they own a certain brand of automobile and other automotive attributes via a survey or registration. These audiences are currently available in the USA. Motorcycle Ownership:Consumer Profiles - Available for US and AustraliaThis audience has been created based on users declaring that they own a certain brand of motorcycle and other motorcycle-based attributes via a survey or registration. These audiences are currently available for the USA. Household:Consumer Profiles - Available for the US and AustraliaThis audience has been created based on users' declaring their marital status, parental status, and the overall number of children via a survey or registration. These audiences are currently available in the USA. Financial:Consumer Profiles - Available for the US and Australia this audience has been created based on their behavior in different financial services like property ownership, mortgage, investing behavior, and wealth and declaring their estimated net worth via a survey or registration. Purchase/ Spending Behavior:Consumer Profiles - Available for the US and AustraliaThis audience has been created based on their behavior in different spending behaviors in different business verticals available in the USA. Clusters:Consumer Profiles - Available for the US and AustraliaClusters are groups of consumers who exhibit similar demographic, lifestyle, and media consumption characteristics, empowering marketers to understand the unique attributes that comprise their most profitable consumer segments. Armed with this rich data, data scientists can drive analytics and modeling to power their brand’s unique marketing initiatives. B2B Audiences;Consumer Profiles - Available for US and AustraliaThis audience has been created based on users declaring their employee credentials, designations, and companies they work in, further specifying business verticals, revenue breakdowns, and headquarters locations. Customizable Audiences Data Segment:Brands can choose the appropriate pre-made audience segments or ask our data experts about creating a custom segment that is precisely tailored to your brief in order to reach their target customers and boost the campaign's effectiveness. Location Query Granularity:Minimum area: HEX 8Maximum area: QuadKey 17/City

  13. d

    NYC Mobile Services Study

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). NYC Mobile Services Study [Dataset]. https://catalog.data.gov/dataset/nyc-mobile-services-study
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    The New York City Department of Consumer and Worker Protection's Office of Financial Empowerment (OFE) published a research study in 2015, evaluating the use of mobile financial services to establish patterns of use among low and middle income New Yorkers. The purpose of this exploration was to analyze the needs, barriers, and opportunities to increase financial inclusion through mobile financial services use. The published report can be found here: https://www1.nyc.gov/assets/dca/MobileServicesStudy/Research-Brief.pdf

  14. d

    Global Phone & Mobile Number Dataset – 34 Million Verified Contacts for B2C...

    • datarade.ai
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Webautomation (2025). Global Phone & Mobile Number Dataset – 34 Million Verified Contacts for B2C Outreach & Enrichment [Dataset]. https://datarade.ai/data-products/global-phone-mobile-number-dataset-34-million-verified-co-webautomation
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Webautomation
    Area covered
    Portugal, Argentina, Mongolia, Faroe Islands, Trinidad and Tobago, Bonaire, Afghanistan, Estonia, Cayman Islands, Spain
    Description

    Unlock the power of direct engagement with our comprehensive dataset of 34 million verified global phone numbers. This dataset is curated for businesses and data-driven teams looking to enhance customer acquisition, power targeted outreach, enrich CRM records, and fuel B2C growth at scale.

    Whether you're running SMS marketing campaigns, telemarketing, building a mobile app user base, or performing identity validation, this dataset offers a scalable, compliant foundation to reach real users worldwide.

    🔍 What’s Included: ✅ 34,000,000+ mobile and landline numbers

    🌍 Global coverage, including high volumes from the US, UK, Canada, Europe, and emerging markets

    🧹 Clean, structured format (CSV/JSON/SQL) for easy integration

    📱 Includes carrier, country code, line type, and location data (where available)

    🧠 Ideal Use Cases: B2C & D2C marketing campaigns

    SMS and voice call outreach

    Lead generation & prospecting

    Mobile app user acquisition

    Identity verification & enrichment

    Market analysis and segmentation

  15. m

    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven

    • app.mobito.io
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USA POI & Foot Traffic Enriched Geospatial Dataset by Predik Data-Driven [Dataset]. https://app.mobito.io/data-product/usa-enriched-geospatial-framework-dataset
    Explore at:
    Area covered
    United States
    Description

    Our dataset provides detailed and precise insights into the business, commercial, and industrial aspects of any given area in the USA (Including Point of Interest (POI) Data and Foot Traffic. The dataset is divided into 150x150 sqm areas (geohash 7) and has over 50 variables. - Use it for different applications: Our combined dataset, which includes POI and foot traffic data, can be employed for various purposes. Different data teams use it to guide retailers and FMCG brands in site selection, fuel marketing intelligence, analyze trade areas, and assess company risk. Our dataset has also proven to be useful for real estate investment.- Get reliable data: Our datasets have been processed, enriched, and tested so your data team can use them more quickly and accurately.- Ideal for trainning ML models. The high quality of our geographic information layers results from more than seven years of work dedicated to the deep understanding and modeling of geospatial Big Data. Among the features that distinguished this dataset is the use of anonymized and user-compliant mobile device GPS location, enriched with other alternative and public data.- Easy to use: Our dataset is user-friendly and can be easily integrated to your current models. Also, we can deliver your data in different formats, like .csv, according to your analysis requirements. - Get personalized guidance: In addition to providing reliable datasets, we advise your analysts on their correct implementation.Our data scientists can guide your internal team on the optimal algorithms and models to get the most out of the information we provide (without compromising the security of your internal data).Answer questions like: - What places does my target user visit in a particular area? Which are the best areas to place a new POS?- What is the average yearly income of users in a particular area?- What is the influx of visits that my competition receives?- What is the volume of traffic surrounding my current POS?This dataset is useful for getting insights from industries like:- Retail & FMCG- Banking, Finance, and Investment- Car Dealerships- Real Estate- Convenience Stores- Pharma and medical laboratories- Restaurant chains and franchises- Clothing chains and franchisesOur dataset includes more than 50 variables, such as:- Number of pedestrians seen in the area.- Number of vehicles seen in the area.- Average speed of movement of the vehicles seen in the area.- Point of Interest (POIs) (in number and type) seen in the area (supermarkets, pharmacies, recreational locations, restaurants, offices, hotels, parking lots, wholesalers, financial services, pet services, shopping malls, among others). - Average yearly income range (anonymized and aggregated) of the devices seen in the area.Notes to better understand this dataset:- POI confidence means the average confidence of POIs in the area. In this case, POIs are any kind of location, such as a restaurant, a hotel, or a library. - Category confidences, for example"food_drinks_tobacco_retail_confidence" indicates how confident we are in the existence of food/drink/tobacco retail locations in the area. - We added predictions for The Home Depot and Lowe's Home Improvement stores in the dataset sample. These predictions were the result of a machine-learning model that was trained with the data. Knowing where the current stores are, we can find the most similar areas for new stores to open.How efficient is a Geohash?Geohash is a faster, cost-effective geofencing option that reduces input data load and provides actionable information. Its benefits include faster querying, reduced cost, minimal configuration, and ease of use.Geohash ranges from 1 to 12 characters. The dataset can be split into variable-size geohashes, with the default being geohash7 (150m x 150m).

  16. Mobile Source Observation Database (MSOD)

    • datasets.ai
    • datadiscoverystudio.org
    • +2more
    8
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2024). Mobile Source Observation Database (MSOD) [Dataset]. https://datasets.ai/datasets/mobile-source-observation-database-msod
    Explore at:
    8Available download formats
    Dataset updated
    Sep 22, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Authors
    U.S. Environmental Protection Agency
    Description

    The Mobile Source Observation Database (MSOD) is a relational database being developed by the Assessment and Standards Division (ASD) of the US Environmental Protection Agency Office of Transportation and Air Quality (formerly the Office of Mobile Sources). The MSOD contains emission test data from in-use mobile air- pollution sources such as cars, trucks, and engines from trucks and nonroad vehicles. Data in the database was collected from 1982 to the present. The data is intended to be representative of in-use vehicle emissions in the United States.

  17. f

    YouTube Dataset on Mobile Streaming for Internet Traffic Modeling, Network...

    • figshare.com
    txt
    Updated Apr 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frank Loh; Florian Wamser; Fabian Poignée; Stefan Geißler; Tobias Hoßfeld (2022). YouTube Dataset on Mobile Streaming for Internet Traffic Modeling, Network Management, and Streaming Analysis [Dataset]. http://doi.org/10.6084/m9.figshare.19096823.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 14, 2022
    Dataset provided by
    figshare
    Authors
    Frank Loh; Florian Wamser; Fabian Poignée; Stefan Geißler; Tobias Hoßfeld
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    YouTube
    Description

    Streaming is by far the predominant type of traffic in communication networks. With thispublic dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3G/4G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.

  18. DISCOVER-AQ Colorado Deployment Mobile Platform Data - Dataset - NASA Open...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). DISCOVER-AQ Colorado Deployment Mobile Platform Data - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/discover-aq-colorado-deployment-mobile-platform-data-d0462
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    Colorado
    Description

    DISCOVERAQ_Colorado_Ground_Mobile_Data contains data collected via the Princeton Mobile Lab and NASA Langley LARGE Mobile Lab during the Colorado (Denver) deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Colorado deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P3-B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.

  19. c

    Facebook Dataset

    • cubig.ai
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Facebook Dataset [Dataset]. https://cubig.ai/store/products/269/facebook-dataset
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Facebook Data is a social network analysis data that can be used to identify key user groups that can contribute to business growth and develop recommendation strategies, including Facebook users' activity patterns, interactions, likes, friendships, gender, and age.

    2) Data Utilization (1) Facebook Data has characteristics that: • This dataset consists of numerical and categorical variables such as user ID, gender, age, number of friends, number of likes (mobile/web), number of friend requests, number of likes received/sent, and frequency of activities, allowing you to analyze user-specific behavioral characteristics and interaction patterns from multiple angles. (2) Facebook Data can be used to: • Core User Group Targeting and Recommendation Strategies: Use key characteristics such as gender, age, frequency of activity, friends and likes to identify user groups that have a significant impact on business growth and to develop customized content and advertising recommendation strategies. • Analysis of Usage Behavior and Platform Trends: Mobile and Web-based Good By analyzing data such as distribution, age and gender activity patterns, and friend relationship formation, you can visually explore changes in user usage behavior and major trends within the platform.

  20. R

    Ad Detection Dataset

    • universe.roboflow.com
    zip
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    phone (2025). Ad Detection Dataset [Dataset]. https://universe.roboflow.com/phone-hzo2y/ad-detection-bj2zo/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    phone
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    ADL Bounding Boxes
    Description

    AD Detection

    ## Overview
    
    AD Detection is a dataset for object detection tasks - it contains ADL annotations for 250 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dappier (2024). Advertising Data | Auction, Bids & Wins Data from Mobile, TV, & Advertising | 150 billion+ monthly Real Time Bidding Data [Dataset]. https://datarade.ai/data-products/advertising-data-auction-bids-wins-data-from-mobile-tv-dappier

Advertising Data | Auction, Bids & Wins Data from Mobile, TV, & Advertising | 150 billion+ monthly Real Time Bidding Data

Explore at:
.csv, .jsonAvailable download formats
Dataset updated
Nov 27, 2024
Dataset authored and provided by
Dappier
Area covered
United Republic of, Djibouti, Mozambique, Botswana, Uganda, Croatia, Tuvalu, Togo, Mongolia, Sierra Leone
Description

Adveritising data and real time bidding data from multiple screens (TV, mobile, and web) and detailed performance metrics that span impressions, clicks, geographic data, view-ability, and demographic targeting. Our dataset ensures high accuracy, derived from a proprietary advertising technology platform trusted by leading brands and agencies to deliver cross-platform campaigns.

This dataset includes key metrics from ad auctions, bids & wins such as: -impressions -geographic data -clicks -viewability -demographic targeting -click-through rates (CTR)

How is the data generally sourced?

This dataset is sourced from auction-level insights, tracking bids, wins, and performance metrics across major ad exchanges and programmatic platforms. Data collection adheres to strict compliance standards, ensuring transparency and reliability.

What are the primary use cases or verticals of this Data Product?

Primary use cases include:

Predictive analytics: Build models to forecast campaign success.

Audience segmentation: Create more personalized and targeted ad experiences.

Campaign optimization: Optimize ad placement, timing, and performance.

Ad personalization: Drive engagement by tailoring ads to demographic and geographic audiences.

Industries served include advertising, media, retail, and e-commerce, with applicability in both programmatic and direct ad placements.

Advertising Data is a key component of our comprehensive data suite, designed to empower companies and marketers with actionable insights. Enables a holistic view of the advertising ecosystem, helping clients achieve higher ROI and better campaign outcomes.

Search
Clear search
Close search
Google apps
Main menu