Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.
Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico
The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This comprehensive synthetic dataset contains 2,514 authentic mobile app reviews spanning 40+ popular applications across 24 different languages, making it ideal for multilingual NLP, sentiment analysis, and cross-cultural user behavior research.
Column Name | Data Type | Description | Sample Values | Null Count |
---|---|---|---|---|
review_id | Integer | Unique identifier for each review | 1, 2, 3, ... | 0 |
user_id | String* | User identifier (should be integer) | "1967825", "9242600" | 0 |
app_name | String | Name of the mobile application | WhatsApp, Instagram, TikTok | 0 |
app_category | String | Application category | Social Networking, Entertainment | 0 |
review_text | String | Multilingual review content | "This app is amazing!" | 63 |
review_language | String | ISO language code | en, es, fr, zh, hi, ar | 0 |
rating | Mixed* | App rating (1.0-5.0, some as strings) | 4.5, "3.2", 1.1 | 38 |
review_date | DateTime | Timestamp of review submission | 2024-10-09 19:26:40 | 0 |
verified_purchase | Boolean | Purchase verification status | True, False | 0 |
device_type | String | Device platform | Android, iOS, iPad, Windows Phone | 0 |
num_helpful_votes | Mixed* | Helpfulness votes (some as strings) | 65, "209", 163 | 0 |
user_age | Float* | User age (should be integer) | 14.0, 18.0, 67.0 | 0 |
user_country | String | User's country | China, Germany, Nigeria | 50 |
user_gender | String | User gender | Male, Female, Non-binary, Prefer not to say | 88 |
app_version | String | Application version number | 1.4, v8.9, 2.8.37.5926 | 25 |
Note: Data types marked with asterisk require cleaning/conversion
The dataset includes reviews in 24 languages: - European: English (en), Spanish (es), French (fr), German (de), Italian (it), Russian (ru), Polish (pl), Dutch (nl), Swedish (sv), Danish (da), Norwegian (no), Finnish (fi) - Asian: Chinese (zh), Hindi (hi), Japanese (ja), Korean (ko), Thai (th), Vietnamese (vi), Indonesian (id), Malay (ms) - Other: Arabic (ar), Turkish (tr), Filipino (tl)
Reviews cover 18 distinct categories:
- Social Networking
- Entertainment
- Productivity
- Travel & Local
- Music & Audio
- Video Players & Editors
- Shopping
- Navigation
- Finance
- Communication
- Education
- Photography
- Dating
- Business
- Utilities
- Health & Fitness
- Games
- News & Magazines
40+ applications including: - Social: WhatsApp, Instagram, Facebook, Snapchat, TikTok, LinkedIn, Twitter, Reddit, Pinterest - Entertainment: YouTube, Netflix, Spotify - Productivity: Microsoft Office, Google Drive, Dropbox, OneDrive, Zoom, Discord - Travel: Uber, Lyft, Airbnb, Booking.com, Google Maps, Waze - Finance: PayPal, Venmo - Education: Duolingo, Khan Academy, Coursera, Udemy - Tools: Grammarly, Canva, Adobe Photoshop, VLC, MX Player
Reviews from 24 countries across all continents: - Asia: China, India, Japan, South Korea, Thailand, Vietnam, Indonesia, Malaysia, Philippines, Pakistan, Bangladesh - Europe: Germany, United Kingdom, France, Italy, Spain, Russia, Turkey, Poland - Americas: United States, Canada, Brazil, Mexico - Oceania: Australia - Africa: Nigeria
Intentional data challenges for learning:
- Missing Values: Strategic nulls in review_text (63), rating (38), user_country (50), user_gender (88), app_version (25)
- Data Type Issues:
- user_id stored as strings (should be integers)
- user_age as floats (should be integers)
- Some ratings as strings (should be floats)
- Some helpful_votes as strings (should be integers)
- Mixed Version Formats: "1.4", "v8.9", "2.8.37.5926", "14.1.60.318-beta"
This dataset is perfect for: - Multilingual NLP projects and sentiment analysis - Cross-cultural user behavior analysis - App store analytics and rating prediction - Data cleaning and preprocessing practice - Text classification across multiple languages - Time series analysis of app reviews - Geographic sentiment analysis - Data engineering pipeline development
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
During the study period
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
This dataset offers a focused and invaluable window into user perceptions and experiences with applications listed on the Apple App Store. It is a vital resource for app developers, product managers, market analysts, and anyone seeking to understand the direct voice of the customer in the dynamic mobile app ecosystem.
Dataset Specifications:
Last crawled:
(This field is blank in your provided info, which means its recency is currently unknown. If this were a real product, specifying this would be critical for its value proposition.)Richness of Detail (11 Comprehensive Fields):
Each record in this dataset provides a detailed breakdown of a single App Store review, enabling multi-dimensional analysis:
Review Content:
review
: The full text of the user's written feedback, crucial for Natural Language Processing (NLP) to extract themes, sentiment, and common keywords.title
: The title given to the review by the user, often summarizing their main point.isEdited
: A boolean flag indicating whether the review has been edited by the user since its initial submission. This can be important for tracking evolving sentiment or understanding user behavior.Reviewer & Rating Information:
username
: The public username of the reviewer, allowing for analysis of engagement patterns from specific users (though not personally identifiable).rating
: The star rating (typically 1-5) given by the user, providing a quantifiable measure of satisfaction.App & Origin Context:
app_name
: The name of the application being reviewed.app_id
: A unique identifier for the application within the App Store, enabling direct linking to app details or other datasets.country
: The country of the App Store storefront where the review was left, allowing for geographic segmentation of feedback.Metadata & Timestamps:
_id
: A unique identifier for the specific review record in the dataset.crawled_at
: The timestamp indicating when this particular review record was collected by the data provider (Crawl Feeds).date
: The original date the review was posted by the user on the App Store.Expanded Use Cases & Analytical Applications:
This dataset is a goldmine for understanding what users truly think and feel about mobile applications. Here's how it can be leveraged:
Product Development & Improvement:
review
text to identify recurring technical issues, crashes, or bugs, allowing developers to prioritize fixes based on user impact.review
text to inform future product roadmap decisions and develop features users actively desire.review
field.rating
and sentiment
after new app updates to assess the effectiveness of bug fixes or new features.Market Research & Competitive Intelligence:
Marketing & App Store Optimization (ASO):
review
and title
fields to gauge overall user satisfaction, pinpoint specific positive and negative aspects, and track sentiment shifts over time.rating
trends and identify critical reviews quickly to facilitate timely responses and proactive customer engagement.Academic & Data Science Research:
review
and title
fields are excellent for training and testing NLP models for sentiment analysis, topic modeling, named entity recognition, and text summarization.rating
distribution, isEdited
status, and date
to understand user engagement and feedback cycles.country
-specific reviews to understand regional differences in app perception, feature preferences, or cultural nuances in feedback.This App Store Reviews dataset provides a direct, unfiltered conduit to understanding user needs and ultimately driving better app performance and greater user satisfaction. Its structured format and granular detail make it an indispensable asset for data-driven decision-making in the mobile app industry.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.
Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.
Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.
Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.
We built a crawler to collect data from the Google Play store including the application's metadata and APK files. The manifest files were extracted from the APK files and then processed to extract the features. The data set is composed of 870,515 records/apps, and for each app we produced 48 features. The data set was used to built and test two bootstrap aggregating of multiple XGBoost machine learning classifiers. The dataset were collected between April 2017 and November 2018. We then checked the status of these applications on three different occasions; December 2018, February 2019, and May-June 2019.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
🚀 MobileViews: A Large-Scale Mobile GUI Dataset
MobileViews is a large-scale dataset designed to support research on mobile agents and mobile user interface (UI) analysis. The first release, MobileViews-600K, includes over 600,000 mobile UI screenshot-view hierarchy (VH) pairs collected from over 20,000 apps on the Google Play Store. This dataset is based on the DroidBot, which we have optimized for large-scale data collection, capturing more comprehensive interaction details while… See the full description on the dataset page: https://huggingface.co/datasets/mllmTeam/MobileViews.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides detailed, event-level records of mobile app feature usage, including user interactions, device context, session information, and user segmentation. It enables product teams and UX researchers to analyze feature adoption rates, engagement patterns, and user cohorts, supporting data-driven decisions for app improvement and user experience optimization.
In the fourth quarter of 2024, TikTok generated around 186 million downloads from users worldwide. Initially launched in China first by ByteDance as Douyin, the short-video format was popularized by TikTok and took over the global social media environment in 2020. In the first quarter of 2020, TikTok downloads peaked at over 313.5 million worldwide, up by 62.3 percent compared to the first quarter of 2019. TikTok interactions: is there a magic formula for content success? In 2024, TikTok registered an engagement rate of approximately 4.64 percent on video content hosted on its platform. During the same examined year, the social video app recorded over 1,100 interactions on average. These interactions were primarily composed of likes, while only recording less than 20 comments per piece of content on average in 2024. The platform has been actively monitoring the issue of fake interactions, as it removed around 236 million fake likes during the first quarter of 2024. Though there is no secret formula to get the maximum of these metrics, recommended video length can possibly contribute to the success of content on TikTok. It was recommended that tiny TikTok accounts with up to 500 followers post videos that are around 2.6 minutes long as of the first quarter of 2024. While, the ideal video duration for huge TikTok accounts with over 50,000 followers was 7.28 minutes. The average length of TikTok videos posted by the creators in 2024 was around 43 seconds. What’s trending on TikTok Shop? Since its launch in September 2023, TikTok Shop has become one of the most popular online shopping platforms, offering consumers a wide variety of products. In 2023, TikTok shops featuring beauty and personal care items sold over 370 million products worldwide. TikTok shops featuring womenswear and underwear, as well as food and beverages, followed with 285 and 138 million products sold, respectively. Similarly, in the United States market, health and beauty products were the most-selling items, accounting for 85 percent of sales made via the TikTok Shop feature during the first month of its launch. In 2023, Indonesia was the market with the largest number of TikTok Shops, hosting over 20 percent of all TikTok Shops. Thailand and Vietnam followed with 18.29 and 17.54 percent of the total shops listed on the famous short video platform, respectively.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains reviews for one of the most popular mobile app - tiktok. All the publicly posted reviews are scraped from the google play store.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.
https://www.paradoxintelligence.com/termshttps://www.paradoxintelligence.com/terms
App download rankings, usage metrics, and user engagement data (iOS/Android)
This dataset encompasses mobile smartphone application (app) usage, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). Use it for measurement, attribution or surveying to understand the why. iOS and Android operating system coverage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises 10,000 user reviews of the BCA Mobile app collected from the Google Play Store between December 24, 2023, and June 12, 2024. Each review includes the user's name, the rating they provided (ranging from 1 to 5 stars), the timestamp of when the review was created, and the text content of the review. The dataset is in Indonesian and focuses on feedback from users in Indonesia. This data can be used to perform sentiment analysis, understand user experiences, identify common issues, and assess the overall performance of the BCA Mobile app during the specified timeframe. The reviews are sorted based on the newest first, providing the latest feedback at the top.
https://brightdata.com/licensehttps://brightdata.com/license
This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes network traffic data from more than 50 Android applications across 5 different scenarios. The applications are consistent in all scenarios, but other factors like location, device, and user vary (see Table 2 in the paper). The current repository pertains to Scenario D. Within the repository, for each application, there is a compressed file containing the relevant PCAP files. The PCAP files follow the naming convention: {Application Name}{Scenario ID}{#Trace}_Final.pcap.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository is part of the ITC-NetMingledApp dataset, which includes network traffic data from 36 Android applications, with each capture featuring concurrent traffic from multiple applications and smartphones. This repository contains data related to the Iran-Qom scenario. Each capture is stored in a compressed file containing the relevant PCAP files of the associated applications. The PCAP files are named according to a convention: {TimeStamp}_{Application Name}{Download-Upload Speed}.pcap
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
This comprehensive iOS application reviews dataset contains thousands of authentic user reviews from the Apple App Store in English. The dataset provides valuable insights for app developers, marketers, and researchers studying mobile application performance and user sentiment.
Key Features:
Applications: Perfect for sentiment analysis, app store optimization, mobile app development research, user experience studies, and competitive analysis. This dataset enables businesses to understand user preferences, identify app improvement opportunities, and develop better mobile applications.
Data Quality: All reviews are genuine user feedback collected from the official Apple App Store, ensuring authenticity and reliability for research and business intelligence purposes. The dataset covers various app categories including fitness, shopping, education, entertainment, and productivity applications.
While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.
Each app (row) has values for catergory, rating, size, and more.
This information is scraped from the Google Play Store. This app information would not be available without it.
The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!
Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.
Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico
The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.