100+ datasets found
  1. RICO dataset

    • kaggle.com
    Updated Dec 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onur Gunes (2021). RICO dataset [Dataset]. https://www.kaggle.com/datasets/onurgunes1993/rico-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Onur Gunes
    Description

    Context

    Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.

    Content

    Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.

    Acknowledgements

    UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico

    Inspiration

    The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.

  2. Multilingual Mobile App Review Dataset August 2025

    • kaggle.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pratyush Puri (2025). Multilingual Mobile App Review Dataset August 2025 [Dataset]. https://www.kaggle.com/datasets/pratyushpuri/multilingual-mobile-app-reviews-dataset-2025
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Pratyush Puri
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Multilingual Mobile App Reviews Dataset 2025

    Overview

    This comprehensive synthetic dataset contains 2,514 authentic mobile app reviews spanning 40+ popular applications across 24 different languages, making it ideal for multilingual NLP, sentiment analysis, and cross-cultural user behavior research.

    Dataset Statistics

    • Total Records: 2,514 reviews
    • Columns: 15 features
    • Languages Covered: 24 international languages
    • Apps Included: 40+ popular mobile applications
    • Time Range: 2023-2025 (2-year span)
    • File Format: CSV
    • Data Quality: Intentionally includes missing values and mixed data types for data cleaning practice

    Column Specifications

    Column NameData TypeDescriptionSample ValuesNull Count
    review_idIntegerUnique identifier for each review1, 2, 3, ...0
    user_idString*User identifier (should be integer)"1967825", "9242600"0
    app_nameStringName of the mobile applicationWhatsApp, Instagram, TikTok0
    app_categoryStringApplication categorySocial Networking, Entertainment0
    review_textStringMultilingual review content"This app is amazing!"63
    review_languageStringISO language codeen, es, fr, zh, hi, ar0
    ratingMixed*App rating (1.0-5.0, some as strings)4.5, "3.2", 1.138
    review_dateDateTimeTimestamp of review submission2024-10-09 19:26:400
    verified_purchaseBooleanPurchase verification statusTrue, False0
    device_typeStringDevice platformAndroid, iOS, iPad, Windows Phone0
    num_helpful_votesMixed*Helpfulness votes (some as strings)65, "209", 1630
    user_ageFloat*User age (should be integer)14.0, 18.0, 67.00
    user_countryStringUser's countryChina, Germany, Nigeria50
    user_genderStringUser genderMale, Female, Non-binary, Prefer not to say88
    app_versionStringApplication version number1.4, v8.9, 2.8.37.592625

    Note: Data types marked with asterisk require cleaning/conversion

    Language Distribution

    The dataset includes reviews in 24 languages: - European: English (en), Spanish (es), French (fr), German (de), Italian (it), Russian (ru), Polish (pl), Dutch (nl), Swedish (sv), Danish (da), Norwegian (no), Finnish (fi) - Asian: Chinese (zh), Hindi (hi), Japanese (ja), Korean (ko), Thai (th), Vietnamese (vi), Indonesian (id), Malay (ms) - Other: Arabic (ar), Turkish (tr), Filipino (tl)

    Application Categories

    Reviews cover 18 distinct categories: - Social Networking - Entertainment
    - Productivity - Travel & Local - Music & Audio - Video Players & Editors - Shopping - Navigation - Finance - Communication - Education - Photography - Dating - Business - Utilities - Health & Fitness - Games - News & Magazines

    Popular Apps Included

    40+ applications including: - Social: WhatsApp, Instagram, Facebook, Snapchat, TikTok, LinkedIn, Twitter, Reddit, Pinterest - Entertainment: YouTube, Netflix, Spotify - Productivity: Microsoft Office, Google Drive, Dropbox, OneDrive, Zoom, Discord - Travel: Uber, Lyft, Airbnb, Booking.com, Google Maps, Waze - Finance: PayPal, Venmo - Education: Duolingo, Khan Academy, Coursera, Udemy - Tools: Grammarly, Canva, Adobe Photoshop, VLC, MX Player

    Geographic Distribution

    Reviews from 24 countries across all continents: - Asia: China, India, Japan, South Korea, Thailand, Vietnam, Indonesia, Malaysia, Philippines, Pakistan, Bangladesh - Europe: Germany, United Kingdom, France, Italy, Spain, Russia, Turkey, Poland - Americas: United States, Canada, Brazil, Mexico - Oceania: Australia - Africa: Nigeria

    Data Quality Features

    Intentional data challenges for learning: - Missing Values: Strategic nulls in review_text (63), rating (38), user_country (50), user_gender (88), app_version (25) - Data Type Issues: - user_id stored as strings (should be integers) - user_age as floats (should be integers)
    - Some ratings as strings (should be floats) - Some helpful_votes as strings (should be integers) - Mixed Version Formats: "1.4", "v8.9", "2.8.37.5926", "14.1.60.318-beta"

    Use Cases

    This dataset is perfect for: - Multilingual NLP projects and sentiment analysis - Cross-cultural user behavior analysis - App store analytics and rating prediction - Data cleaning and preprocessing practice - Text classification across multiple languages - Time series analysis of app reviews - Geographic sentiment analysis - Data engineering pipeline development

    Data Cleaning Opportunities

    • Convert string IDs to integers
    • Standardize rating values to float
    • Han...
  3. i

    LSApp: Large dataset of Sequential mobile App usage

    • ieee-dataport.org
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cunquan Qu (2025). LSApp: Large dataset of Sequential mobile App usage [Dataset]. https://ieee-dataport.org/documents/lsapp-large-dataset-sequential-mobile-app-usage
    Explore at:
    Dataset updated
    Feb 25, 2025
    Authors
    Cunquan Qu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    During the study period

  4. Unlocking User Sentiment: The App Store Reviews Dataset

    • crawlfeeds.com
    json, zip
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Unlocking User Sentiment: The App Store Reviews Dataset [Dataset]. https://crawlfeeds.com/datasets/app-store-reviews-dataset
    Explore at:
    json, zipAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This dataset offers a focused and invaluable window into user perceptions and experiences with applications listed on the Apple App Store. It is a vital resource for app developers, product managers, market analysts, and anyone seeking to understand the direct voice of the customer in the dynamic mobile app ecosystem.

    Dataset Specifications:

    • Investment: $45.0
    • Status: Published and immediately available.
    • Category: Ratings and Reviews Data
    • Format: Compressed ZIP archive containing JSON files, ensuring easy integration into your analytical tools and platforms.
    • Volume: Comprises 10,000 unique app reviews, providing a robust sample for qualitative and quantitative analysis of user feedback.
    • Timeliness: Last crawled: (This field is blank in your provided info, which means its recency is currently unknown. If this were a real product, specifying this would be critical for its value proposition.)

    Richness of Detail (11 Comprehensive Fields):

    Each record in this dataset provides a detailed breakdown of a single App Store review, enabling multi-dimensional analysis:

    1. Review Content:

      • review: The full text of the user's written feedback, crucial for Natural Language Processing (NLP) to extract themes, sentiment, and common keywords.
      • title: The title given to the review by the user, often summarizing their main point.
      • isEdited: A boolean flag indicating whether the review has been edited by the user since its initial submission. This can be important for tracking evolving sentiment or understanding user behavior.
    2. Reviewer & Rating Information:

      • username: The public username of the reviewer, allowing for analysis of engagement patterns from specific users (though not personally identifiable).
      • rating: The star rating (typically 1-5) given by the user, providing a quantifiable measure of satisfaction.
    3. App & Origin Context:

      • app_name: The name of the application being reviewed.
      • app_id: A unique identifier for the application within the App Store, enabling direct linking to app details or other datasets.
      • country: The country of the App Store storefront where the review was left, allowing for geographic segmentation of feedback.
    4. Metadata & Timestamps:

      • _id: A unique identifier for the specific review record in the dataset.
      • crawled_at: The timestamp indicating when this particular review record was collected by the data provider (Crawl Feeds).
      • date: The original date the review was posted by the user on the App Store.

    Expanded Use Cases & Analytical Applications:

    This dataset is a goldmine for understanding what users truly think and feel about mobile applications. Here's how it can be leveraged:

    • Product Development & Improvement:

      • Bug Detection & Prioritization: Analyze negative review text to identify recurring technical issues, crashes, or bugs, allowing developers to prioritize fixes based on user impact.
      • Feature Requests & Roadmap Prioritization: Extract feature suggestions from positive and neutral review text to inform future product roadmap decisions and develop features users actively desire.
      • User Experience (UX) Enhancement: Understand pain points related to app design, navigation, and overall usability by analyzing common complaints in the review field.
      • Version Impact Analysis: If integrated with app version data, track changes in rating and sentiment after new app updates to assess the effectiveness of bug fixes or new features.
    • Market Research & Competitive Intelligence:

      • Competitor Benchmarking: Analyze reviews of competitor apps (if included or combined with similar datasets) to identify their strengths, weaknesses, and user expectations within a specific app category.
      • Market Gap Identification: Discover unmet user needs or features that users desire but are not adequately provided by existing apps.
      • Niche Opportunities: Identify specific use cases or user segments that are underserved based on recurring feedback.
    • Marketing & App Store Optimization (ASO):

      • Sentiment Analysis: Perform sentiment analysis on the review and title fields to gauge overall user satisfaction, pinpoint specific positive and negative aspects, and track sentiment shifts over time.
      • Keyword Optimization: Identify frequently used keywords and phrases in reviews to optimize app store listings, improving discoverability and search ranking.
      • Messaging Refinement: Understand how users describe and use the app in their own words, which can inform marketing copy and advertising campaigns.
      • Reputation Management: Monitor rating trends and identify critical reviews quickly to facilitate timely responses and proactive customer engagement.
    • Academic & Data Science Research:

      • Natural Language Processing (NLP): The review and title fields are excellent for training and testing NLP models for sentiment analysis, topic modeling, named entity recognition, and text summarization.
      • User Behavior Analysis: Study patterns in rating distribution, isEdited status, and date to understand user engagement and feedback cycles.
      • Cross-Country Comparisons: Analyze country-specific reviews to understand regional differences in app perception, feature preferences, or cultural nuances in feedback.

    This App Store Reviews dataset provides a direct, unfiltered conduit to understanding user needs and ultimately driving better app performance and greater user satisfaction. Its structured format and granular detail make it an indispensable asset for data-driven decision-making in the mobile app industry.

  5. IOS App Store reviews dataset

    • crawlfeeds.com
    csv, zip
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS App Store reviews dataset [Dataset]. https://crawlfeeds.com/datasets/ios-app-store-reviews-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.

    Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.

    Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.

    Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.

  6. e

    The manifest and store data of 870,515 Android mobile applications - Dataset...

    • b2find.eudat.eu
    Updated Oct 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). The manifest and store data of 870,515 Android mobile applications - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/b25ee20e-5268-50ae-9914-4bc70bd4ff1c
    Explore at:
    Dataset updated
    Oct 23, 2023
    Description

    We built a crawler to collect data from the Google Play store including the application's metadata and APK files. The manifest files were extracted from the APK files and then processed to extract the features. The data set is composed of 870,515 records/apps, and for each app we produced 48 features. The data set was used to built and test two bootstrap aggregating of multiple XGBoost machine learning classifiers. The dataset were collected between April 2017 and November 2018. We then checked the status of these applications on three different occasions; December 2018, February 2019, and May-June 2019.

  7. h

    Data from: MobileViews

    • huggingface.co
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mllm (2024). MobileViews [Dataset]. https://huggingface.co/datasets/mllmTeam/MobileViews
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 14, 2024
    Authors
    mllm
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    🚀 MobileViews: A Large-Scale Mobile GUI Dataset

    MobileViews is a large-scale dataset designed to support research on mobile agents and mobile user interface (UI) analysis. The first release, MobileViews-600K, includes over 600,000 mobile UI screenshot-view hierarchy (VH) pairs collected from over 20,000 apps on the Google Play Store. This dataset is based on the DroidBot, which we have optimized for large-scale data collection, capturing more comprehensive interaction details while… See the full description on the dataset page: https://huggingface.co/datasets/mllmTeam/MobileViews.

  8. G

    Mobile App Feature Usage Dataset

    • gomask.ai
    csv
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GoMask.ai (2025). Mobile App Feature Usage Dataset [Dataset]. https://gomask.ai/marketplace/datasets/mobile-app-feature-usage-dataset
    Explore at:
    csv(Unknown)Available download formats
    Dataset updated
    Aug 21, 2025
    Dataset provided by
    GoMask.ai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    app_id, country, user_id, app_name, usage_id, feature_id, os_version, session_id, app_version, device_type, and 5 more
    Description

    This dataset provides detailed, event-level records of mobile app feature usage, including user interactions, device context, session information, and user segmentation. It enables product teams and UX researchers to analyze feature adoption rates, engagement patterns, and user cohorts, supporting data-driven decisions for app improvement and user experience optimization.

  9. TikTok global quarterly downloads 2018-2024

    • statista.com
    • es.statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). TikTok global quarterly downloads 2018-2024 [Dataset]. https://www.statista.com/topics/1002/mobile-app-usage/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In the fourth quarter of 2024, TikTok generated around 186 million downloads from users worldwide. Initially launched in China first by ByteDance as Douyin, the short-video format was popularized by TikTok and took over the global social media environment in 2020. In the first quarter of 2020, TikTok downloads peaked at over 313.5 million worldwide, up by 62.3 percent compared to the first quarter of 2019. TikTok interactions: is there a magic formula for content success? In 2024, TikTok registered an engagement rate of approximately 4.64 percent on video content hosted on its platform. During the same examined year, the social video app recorded over 1,100 interactions on average. These interactions were primarily composed of likes, while only recording less than 20 comments per piece of content on average in 2024. The platform has been actively monitoring the issue of fake interactions, as it removed around 236 million fake likes during the first quarter of 2024. Though there is no secret formula to get the maximum of these metrics, recommended video length can possibly contribute to the success of content on TikTok. It was recommended that tiny TikTok accounts with up to 500 followers post videos that are around 2.6 minutes long as of the first quarter of 2024. While, the ideal video duration for huge TikTok accounts with over 50,000 followers was 7.28 minutes. The average length of TikTok videos posted by the creators in 2024 was around 43 seconds. What’s trending on TikTok Shop? Since its launch in September 2023, TikTok Shop has become one of the most popular online shopping platforms, offering consumers a wide variety of products. In 2023, TikTok shops featuring beauty and personal care items sold over 370 million products worldwide. TikTok shops featuring womenswear and underwear, as well as food and beverages, followed with 285 and 138 million products sold, respectively. Similarly, in the United States market, health and beauty products were the most-selling items, accounting for 85 percent of sales made via the TikTok Shop feature during the first month of its launch. In 2023, Indonesia was the market with the largest number of TikTok Shops, hosting over 20 percent of all TikTok Shops. Thailand and Vietnam followed with 18.29 and 17.54 percent of the total shops listed on the famous short video platform, respectively. 

  10. 3.5M Tiktok Mobile App Reviews

    • kaggle.com
    Updated Sep 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Bansal (2021). 3.5M Tiktok Mobile App Reviews [Dataset]. https://www.kaggle.com/datasets/shivamb/35-million-tiktok-mobile-app-reviews/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 23, 2021
    Dataset provided by
    Kaggle
    Authors
    Shivam Bansal
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset contains reviews for one of the most popular mobile app - tiktok. All the publicly posted reviews are scraped from the google play store.

    Inspiration

    • The dataset can be used to identify key insights related to the app, key problems/issues people have raised.
    • Perform sentiment analysis of the reviews and find what people are talking about.
    • Perform topic modeling to identify key topics mentioned in the review over time
    • Generate visualizations of different worlds / n-grams / topics extracted from the reviews.
  11. H

    Worldwide Mobile App User Behavior Dataset

    • dataverse.harvard.edu
    doc, xlsx
    Updated Sep 28, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2014). Worldwide Mobile App User Behavior Dataset [Dataset]. http://doi.org/10.7910/DVN/27459
    Explore at:
    doc(56320), xlsx(7037534)Available download formats
    Dataset updated
    Sep 28, 2014
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2012
    Area covered
    Worldwide
    Description

    We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.

  12. p

    Data from: Mobile App Analytics

    • paradoxintelligence.com
    json/csv
    Updated Apr 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paradox Intelligence (2025). Mobile App Analytics [Dataset]. https://www.paradoxintelligence.com/datasets
    Explore at:
    json/csvAvailable download formats
    Dataset updated
    Apr 18, 2025
    Dataset authored and provided by
    Paradox Intelligence
    License

    https://www.paradoxintelligence.com/termshttps://www.paradoxintelligence.com/terms

    Time period covered
    2015 - Present
    Area covered
    Global
    Description

    App download rankings, usage metrics, and user engagement data (iOS/Android)

  13. m

    Mobile App Usage | 1st Party | 3B+ events verified, US consumers |...

    • omnitrafficdata.mfour.com
    • datarade.ai
    Updated Dec 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MFour (2021). Mobile App Usage | 1st Party | 3B+ events verified, US consumers | Event-level iOS & Android [Dataset]. https://omnitrafficdata.mfour.com/products/mobile-app-usage-1st-party-3b-events-verified-us-consum-mfour
    Explore at:
    Dataset updated
    Dec 13, 2021
    Dataset authored and provided by
    MFour
    Area covered
    United States
    Description

    This dataset encompasses mobile smartphone application (app) usage, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). Use it for measurement, attribution or surveying to understand the why. iOS and Android operating system coverage.

  14. m

    User Reviews of BCA Mobile App from Google Play Store (December 2023 - June...

    • data.mendeley.com
    Updated Jun 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martinus Juan Prasetyo (2024). User Reviews of BCA Mobile App from Google Play Store (December 2023 - June 2024) [Dataset]. http://doi.org/10.17632/mvshyj7g67.1
    Explore at:
    Dataset updated
    Jun 14, 2024
    Authors
    Martinus Juan Prasetyo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset comprises 10,000 user reviews of the BCA Mobile app collected from the Google Play Store between December 24, 2023, and June 12, 2024. Each review includes the user's name, the rating they provided (ranging from 1 to 5 stars), the timestamp of when the review was created, and the text content of the review. The dataset is in Indonesian and focuses on feedback from users in Indonesia. This data can be used to perform sentiment analysis, understand user experiences, identify common issues, and assess the overall performance of the BCA Mobile app during the specified timeframe. The reviews are sorted based on the newest first, providing the latest feedback at the top.

  15. b

    Google Play Store Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data, Google Play Store Datasets [Dataset]. https://brightdata.com/products/datasets/google-play-store
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.

  16. m

    ITC-Net-Blend-60: A Comprehensive Dataset for Robust Mobile App...

    • data.mendeley.com
    Updated Nov 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marziyeh Bayat (2023). ITC-Net-Blend-60: A Comprehensive Dataset for Robust Mobile App Identification in Real-World Network Environment - Scenario D [Dataset]. http://doi.org/10.17632/mcmf627yh5.1
    Explore at:
    Dataset updated
    Nov 15, 2023
    Authors
    Marziyeh Bayat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes network traffic data from more than 50 Android applications across 5 different scenarios. The applications are consistent in all scenarios, but other factors like location, device, and user vary (see Table 2 in the paper). The current repository pertains to Scenario D. Within the repository, for each application, there is a compressed file containing the relevant PCAP files. The PCAP files follow the naming convention: {Application Name}{Scenario ID}{#Trace}_Final.pcap.

  17. m

    ITC-Net-MingledApp: A comprehensive dataset of mixed mobile application...

    • data.mendeley.com
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abolghasem Rezaei Khesal (2024). ITC-Net-MingledApp: A comprehensive dataset of mixed mobile application traffic for robust network traffic classification, domain adaptation, and generalization in diverse environments - Qom Dataset [Dataset]. http://doi.org/10.17632/96jwzrp7fd.1
    Explore at:
    Dataset updated
    Oct 7, 2024
    Authors
    Abolghasem Rezaei Khesal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository is part of the ITC-NetMingledApp dataset, which includes network traffic data from 36 Android applications, with each capture featuring concurrent traffic from multiple applications and smartphones. This repository contains data related to the Iran-Qom scenario. Each capture is stored in a compressed file containing the relevant PCAP files of the associated applications. The PCAP files are named according to a convention: {TimeStamp}_{Application Name}{Download-Upload Speed}.pcap

  18. b

    App Downloads Data (2025)

    • businessofapps.com
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). App Downloads Data (2025) [Dataset]. https://www.businessofapps.com/data/app-statistics/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...

  19. IOS application reviews dataset in English

    • crawlfeeds.com
    csv, zip
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS application reviews dataset in English [Dataset]. https://crawlfeeds.com/datasets/ios-application-reviews-dataset-in-english
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This comprehensive iOS application reviews dataset contains thousands of authentic user reviews from the Apple App Store in English. The dataset provides valuable insights for app developers, marketers, and researchers studying mobile application performance and user sentiment.

    Key Features:

    • Real user reviews from popular iOS apps
    • Star ratings from 1 to 5 stars
    • Review dates and timestamps
    • App store URLs and metadata
    • User demographics and location data
    • App version information
    • Review titles and detailed feedback

    Applications: Perfect for sentiment analysis, app store optimization, mobile app development research, user experience studies, and competitive analysis. This dataset enables businesses to understand user preferences, identify app improvement opportunities, and develop better mobile applications.

    Data Quality: All reviews are genuine user feedback collected from the official Apple App Store, ensuring authenticity and reliability for research and business intelligence purposes. The dataset covers various app categories including fitness, shopping, education, entertainment, and productivity applications.

  20. Google Play Store Apps

    • kaggle.com
    zip
    Updated Feb 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lavanya (2019). Google Play Store Apps [Dataset]. https://www.kaggle.com/lava18/google-play-store-apps
    Explore at:
    zip(2037893 bytes)Available download formats
    Dataset updated
    Feb 3, 2019
    Authors
    Lavanya
    Description

    Context

    While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.

    Content

    Each app (row) has values for catergory, rating, size, and more.

    Acknowledgements

    This information is scraped from the Google Play Store. This app information would not be available without it.

    Inspiration

    The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Onur Gunes (2021). RICO dataset [Dataset]. https://www.kaggle.com/datasets/onurgunes1993/rico-dataset
Organization logo

RICO dataset

A Mobile App Dataset for Building Data-Driven Design Applications

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 2, 2021
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Onur Gunes
Description

Context

Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.

Content

Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.

Acknowledgements

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico

Inspiration

The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.

Search
Clear search
Close search
Google apps
Main menu