43 datasets found
  1. Mobile_usage_dataset_individual_person

    • kaggle.com
    Updated Mar 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    arul08 (2020). Mobile_usage_dataset_individual_person [Dataset]. https://www.kaggle.com/arul08/mobile-usage-dataset-individual-person/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 14, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    arul08
    Description

    Do you know?

    Do you know how much time you spend on an app? Do you know the total use time of a day or average use time of an app?

    What it consists of?

    This data set consists of - how many times a person unlocks his phone. - how much time he spends on every app on every day. - how much time he spends on his phone.

    It lists the usage time of apps for each day.

    What we can do?

    Use the test data to find the Total Minutes that we can use the given app in a day. we can get a clear stats of apps usage. This data set will show you about the persons sleeping behavior as well as what app he spends most of his time. with this we can improve the productivity of the person.

    The dataset was collected from the app usage app.

  2. i

    LSApp: Large dataset of Sequential mobile App usage

    • ieee-dataport.org
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cunquan Qu (2025). LSApp: Large dataset of Sequential mobile App usage [Dataset]. https://ieee-dataport.org/documents/lsapp-large-dataset-sequential-mobile-app-usage
    Explore at:
    Dataset updated
    Feb 25, 2025
    Authors
    Cunquan Qu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    During the study period

  3. Mobile Application User Statistics

    • kaggle.com
    Updated Dec 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wolfgang (2018). Mobile Application User Statistics [Dataset]. https://www.kaggle.com/wolfgangb33r/usercount/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 31, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    wolfgang
    Description

    Context

    This data set contains some basic statistics about user count and user growth as well as crash count for a real mobile app. The dataset contains a basic timeseries of 1 hour resolution for a period of one week.

    Content

    The data set contains columns for total concurrent user count, new users acquired in that period of time, number of sessions and crash count.

    Acknowledgements

    This data set would not be available without the Real User Monitoring capabilities of Dynatrace and its flexibility to export and expose this data for scientific experiments.

    Inspiration

    The data set was intended to play around with seasonality, trend and prediction of timeseries.

  4. H

    Worldwide Mobile App User Behavior Dataset

    • dataverse.harvard.edu
    doc, xlsx
    Updated Sep 28, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2014). Worldwide Mobile App User Behavior Dataset [Dataset]. http://doi.org/10.7910/DVN/27459
    Explore at:
    doc(56320), xlsx(7037534)Available download formats
    Dataset updated
    Sep 28, 2014
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2012
    Area covered
    Worldwide
    Description

    We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.

  5. b

    App Downloads Data (2025)

    • businessofapps.com
    Updated Sep 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2017). App Downloads Data (2025) [Dataset]. https://www.businessofapps.com/data/app-statistics/
    Explore at:
    Dataset updated
    Sep 1, 2017
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...

  6. d

    App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M...

    • datarade.ai
    .csv
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mfour (2023). App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M consumers, 3B+ events verified, US consumers | CCPA Compliant [Dataset]. https://datarade.ai/data-categories/app-data/datasets
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    mfour
    Area covered
    United States of America
    Description

    At MFour, our Behavioral Data stands out for its uniqueness and depth of insights. What makes our data genuinely exceptional is the combination of several key factors:

    • First-Party Opt-In Data: Our data is sourced directly from our opt-in panel of consumers who willingly participate in research and provide observed behaviors. This ensures the highest data quality and eliminates privacy concerns. CCPA compliant.

    • Unparalleled Data Coverage: With access to 3B+ billion events, we have an extensive pool of participants who allow us to observe their brick + mortar location visitation, app + web smartphone usage, or both. This large-scale coverage provides robust and reliable insights.

    • Our data is generally sourced through our Surveys On The Go (SOTG) mobile research app, where consumers are incentivized with cash rewards to participate in surveys and share their observed behaviors. This incentivized approach ensures a willing and engaged panel, leading to the highest-quality data.

    The primary use cases and verticals of our Behavioral Data Product are diverse and varied. Some key applications include:

    • Data Acquisition and Modeling: Our data helps businesses acquire valuable insights into consumer behavior and enables modeling for various research objectives.

    • Shopper Data Analysis: By understanding purchase behavior and patterns, businesses can optimize their strategies, improve targeting, and enhance customer experiences.

    • Media Consumption Insights: Our data provides a deep understanding of viewer behavior and patterns across popular platforms like YouTube, Amazon Prime, Netflix, and Disney+, enabling effective media planning and content optimization.

    • App Performance Optimization: Analyzing app behavior allows businesses to monitor usage patterns, track key performance indicators (KPIs), and optimize app experiences to drive user engagement and retention.

    • Location-Based Targeting: With our detailed location data, businesses can map out consumer visits to physical venues and combine them with web and app behavior to create predictive ad targeting strategies.

    • Audience Creation for Ad Placement: Our data enables the creation of highly targeted audiences for ad campaigns, ensuring better reach and engagement with relevant consumer segments.

    The Behavioral Data Product complements our comprehensive suite of data solutions in the broader context of our data offering. It provides granular and event-level insights into consumer behaviors, which can be combined with other data sets such as survey responses, demographics, or custom profiling questions to offer a holistic understanding of consumer preferences, motivations, and actions.

    MFour's Behavioral Data empowers businesses with unparalleled consumer insights, allowing them to make data-driven decisions, uncover new opportunities, and stay ahead in today's dynamic market landscape.

  7. Social media users in Saudi Arabia 2020-2029

    • statista.com
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Social media users in Saudi Arabia 2020-2029 [Dataset]. https://www.statista.com/study/175878/mobile-apps-usage-in-saudi-arabia/
    Explore at:
    Dataset updated
    Nov 4, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Saudi Arabia
    Description

    The number of social media users in Saudi Arabia was forecast to continuously increase between 2024 and 2029 by in total six million users (+28.05 percent). After the ninth consecutive increasing year, the social media user base is estimated to reach 27.42 million users and therefore a new peak in 2029. Notably, the number of social media users of was continuously increasing over the past years.The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of social media users in countries like Israel and Kuwait.

  8. b

    App Store Data (2025)

    • businessofapps.com
    Updated Jan 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2021). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/
    Explore at:
    Dataset updated
    Jan 12, 2021
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

  9. D

    App Data Statistics Tool Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). App Data Statistics Tool Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-app-data-statistics-tool-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    App Data Statistics Tool Market Outlook



    The global app data statistics tool market size was valued at approximately USD 5.3 billion in 2023 and is projected to reach USD 11.9 billion by 2032, growing at a CAGR of 9.2% during the forecast period. Several growth factors, including the escalating demand for data-driven decision-making and the rise in mobile app usage, are driving this market. As organizations increasingly recognize the value of data analytics in enhancing user engagement and optimizing app performance, the adoption of app data statistics tools is expected to surge significantly.



    The growth of the app data statistics tool market is primarily fueled by the exponential increase in mobile app usage worldwide. With billions of smartphone users generating vast amounts of data daily, companies are leveraging app data statistics tools to gain actionable insights. These tools help in understanding user behavior, tracking app performance, and identifying areas for improvement. Furthermore, the growing emphasis on personalized user experiences has led to an increased demand for sophisticated analytics tools, thereby driving market growth.



    Another critical growth factor is the rising importance of data-driven decision-making in various industries. Organizations across sectors such as BFSI, healthcare, retail, and media are increasingly relying on app data statistics tools to make informed decisions. These tools enable businesses to analyze large datasets, uncover trends, and optimize their strategies. The adoption of analytics tools is also propelled by the need to improve customer satisfaction and loyalty, as companies strive to offer tailored experiences to their users. The integration of artificial intelligence and machine learning in analytics tools further enhances their efficiency and accuracy, contributing to market growth.



    Moreover, the market is benefitting from technological advancements and the increasing availability of advanced analytics tools. Innovations such as real-time analytics, predictive analytics, and big data analytics are enhancing the capabilities of app data statistics tools. These advancements enable organizations to gain deeper insights and make faster, more accurate decisions. Additionally, the proliferation of cloud-based solutions is making analytics tools more accessible and affordable for businesses of all sizes. Cloud deployment offers scalability, flexibility, and cost-efficiency, which are particularly attractive to small and medium enterprises (SMEs).



    The role of Product Analytics Software is becoming increasingly significant in the realm of app data statistics tools. These software solutions are designed to help businesses understand how users interact with their products, providing insights that are crucial for enhancing user experience and driving product development. By analyzing user data, companies can identify trends and patterns that inform strategic decisions, such as feature enhancements and marketing strategies. The integration of Product Analytics Software with app data statistics tools enables businesses to gain a comprehensive view of user behavior, facilitating more informed decision-making and ultimately leading to improved product offerings.



    Regionally, North America holds the largest market share, driven by the presence of numerous tech giants and a high adoption rate of advanced technologies. However, the Asia Pacific region is expected to witness the fastest growth during the forecast period. The rapid digitization, increasing smartphone penetration, and the rising number of app developers in countries like China and India are driving the demand for app data statistics tools. Europe also presents significant growth opportunities, with increasing investments in technology and data analytics across various industries. Latin America and the Middle East & Africa are emerging markets with growing awareness and adoption of analytics tools.



    Component Analysis



    The app data statistics tool market is segmented by components into software and services. Software components dominate the market, driven by the demand for sophisticated analytics solutions that can process vast amounts of data. These software tools are designed to collect, analyze, and visualize data, enabling organizations to derive meaningful insights. The growing adoption of artificial intelligence and machine learning technologies in software solutions further enhances their capabilities, making them indispensable for

  10. Z

    Dataset used for "A Recommender System of Buggy App Checkers for App Store...

    • data.niaid.nih.gov
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lionel Seinturier (2021). Dataset used for "A Recommender System of Buggy App Checkers for App Store Moderators" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5034291
    Explore at:
    Dataset updated
    Jun 28, 2021
    Dataset provided by
    Maria Gomez
    Romain Rouvoy
    Lionel Seinturier
    Martin Monperrus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.

    Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.

    The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.

    For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.

    In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app —i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).

    Dataset Stats Some stats about the datasets:

    • D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.

    • D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.

    Additional stats about the datasets are available here.

    Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).

    In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).

    Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:

    • USES_PERMISSION relationships between APP and PERMISSION nodes
    • HAS_REVIEW between APP and USER_REVIEW nodes
    • HAS_TOPIC between USER_REVIEW and TOPIC nodes
    • BELONGS_TO_CATEGORY between APP and CATEGORY nodes
    • BELONGS_TO_SUBCATEGORY between APP and SUBCATEGORY nodes

    Dataset Files Info

    Neo4j 2.0 Databases

    googlePlayDB1-Jan2014_neo4j_2_0.rar

    googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).

    Neo4j 3.5 Databases

    googlePlayDB1-Jan2014_neo4j_3_5_28.rar

    googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.

      In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
    
      First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
    
  11. Mobile internet users in Saudi Arabia 2010-2029

    • statista.com
    Updated Nov 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Mobile internet users in Saudi Arabia 2010-2029 [Dataset]. https://www.statista.com/study/175878/mobile-apps-usage-in-saudi-arabia/
    Explore at:
    Dataset updated
    Nov 4, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Saudi Arabia
    Description

    The number of smartphone users in Saudi Arabia was forecast to continuously increase between 2024 and 2029 by in total five million users (+22.17 percent). After the nineteenth consecutive increasing year, the smartphone user base is estimated to reach 27.51 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Kuwait and Israel.

  12. A

    App Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). App Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/app-analytics-market-88003
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 27, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The app analytics market, valued at $7.29 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 21.09% from 2025 to 2033. This surge is driven by several key factors. The increasing adoption of mobile applications across diverse industries, coupled with the rising need for businesses to understand user behavior and optimize app performance, fuels the demand for sophisticated analytics solutions. Furthermore, advancements in data analytics technologies, including artificial intelligence (AI) and machine learning (ML), are enabling more insightful and actionable data analysis, further propelling market expansion. The diverse application of app analytics across marketing/advertising, revenue generation, and in-app performance monitoring across various sectors like BFSI, e-commerce, media, travel and tourism, and IT and telecom significantly contributes to this growth. The market is segmented by deployment (mobile apps and website/desktop apps) and end-user industry, with mobile app analytics currently dominating due to the widespread adoption of smartphones. The competitive landscape is characterized by a mix of established technology giants like Google and Amazon alongside specialized app analytics providers like AppsFlyer and Mixpanel. These companies are continuously innovating, integrating new technologies, and expanding their product offerings to cater to the evolving needs of businesses. While the North American market currently holds a significant share, the Asia-Pacific region is expected to witness substantial growth in the coming years driven by increasing smartphone penetration and digitalization initiatives. However, factors like data privacy concerns and the rising complexity of integrating various analytics tools could pose challenges to market growth. Nonetheless, the overall outlook for the app analytics market remains positive, indicating substantial opportunities for players across the value chain. Recent developments include: June 2024 - Comscore and Kochava unveiled an innovative performance media measurement solution, providing marketers with enhanced insights. This cutting-edge cross-screen solution empowers marketers to understand better how linear TV ad campaigns impact both online and offline actions. By integrating Comscore’s Exact Commercial Ratings (ECR) data with Kochava’s sophisticated marketing mix modeling, the solution facilitates the measurement of crucial metrics, including mobile app activities (such as installs and in-app purchases) and website interactions., June 2024 - AppsFlyer announced its integration of the Data Collaboration Platform with Start.io, an omnichannel advertising platform that focuses on real-time mobile audiences for publishers. Through this collaboration, businesses leveraging the AppsFlyer Data Collaboration Platform can merge their Start.io data with campaign metrics and audience insights, creating a more comprehensive dataset for precise audience targeting.. Key drivers for this market are: Increasing Usage of Mobile/Web Apps Across Various End-user Industries, Increasing Adoption of Technologies like 5G Technology and Deeper Penetration of Smartphones; Increase in the Amount of Time Spent on Mobile Devices Coupled With the Increasing Focus on Enhancing Customer Experience. Potential restraints include: Increasing Usage of Mobile/Web Apps Across Various End-user Industries, Increasing Adoption of Technologies like 5G Technology and Deeper Penetration of Smartphones; Increase in the Amount of Time Spent on Mobile Devices Coupled With the Increasing Focus on Enhancing Customer Experience. Notable trends are: Media and Entertainment Industry Expected to Capture Significant Share.

  13. Statistics on government mobile apps | DATA.GOV.HK

    • data.gov.hk
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk, Statistics on government mobile apps | DATA.GOV.HK [Dataset]. https://data.gov.hk/en-data/dataset/hk-dpo-mobileapps-mobileappstat
    Explore at:
    Dataset provided by
    data.gov.hk
    Description

    The name and download numbers of government mobile apps.

  14. Instagram users in Saudi Arabia 2019-2028

    • statista.com
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Instagram users in Saudi Arabia 2019-2028 [Dataset]. https://www.statista.com/study/175878/mobile-apps-usage-in-saudi-arabia/
    Explore at:
    Dataset updated
    Nov 4, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Saudi Arabia
    Description

    The number of Instagram users in Saudi Arabia was forecast to continuously increase between 2024 and 2028 by in total 1.6 million users (+10.64 percent). According to this forecast, in 2028, the Instagram user base will have increased for the fifth consecutive year to 16.64 million users. User figures, shown here with regards to the platform instagram, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Instagram users in countries like Bahrain and Oman.

  15. u

    S3 Dataset

    • portalinvestigacion.um.es
    Updated 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez; López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez (2021). S3 Dataset [Dataset]. https://portalinvestigacion.um.es/documentos/668fc48db9e7c03b01be0de8?lang=de
    Explore at:
    Dataset updated
    2021
    Authors
    López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez; López, Juan Manuel Espín; Celdrán, Alberto Huertas; Marín-Blázquez, Javier G.; Martínez, Francisco Esquembre; Pérez, Gregorio Martínez
    Description

    The S3 dataset contains the behavior (sensors, statistics of applications, and voice) of 21 volunteers interacting with their smartphones for more than 60 days. The type of users is diverse, males and females in the age range from 18 until 70 have been considered in the dataset generation. The wide range of age is a key aspect, due to the impact of age in terms of smartphone usage. To generate the dataset the volunteers installed a prototype of the smartphone application in on their Android mobile phones.
    All attributes of the different kinds of data are writed in a vector. The dataset contains the fellow vectors:
    Sensors:
    This type of vector contains data belonging to smartphone sensors (accelerometer and gyroscope) that has been acquired in a given windows of time. Each vector is obtained every 20 seconds, and the monitored features are:- Average of accelerometer and gyroscope values.- Maximum and minimum of accelerometer and gyroscope values.- Variance of accelerometer and gyroscope values.- Peak-to-peak (max-min) of X, Y, Z coordinates.- Magnitude for gyroscope and accelerometer.

    Statistics:
    These vectors contain data about the different applications used by the user recently. Each vector of statistics is calculated every 60 seconds and contains : - Foreground application counters (number of different and total apps) for the last minute and the last day.- Most common app ID and the number of usages in the last minute and the last day. - ID of the currently active app. - ID of the last active app prior to the current one.- ID of the application most frequently utilized prior to the current application. - Bytes transmitted and received through the network interfaces.

    Voice:
    This kind of vector is generated when the microphone is active in a call o voice note. The speaker vector is an embedding, extracted from the audio, and it contains information about the user's identity. This vector, is usually named "x-vector" in the Speaker Recognition field, and it is calculated following the steps detailed in "egs/sitw/v2" for the Kaldi library, with the models available for the extraction of the embedding.


    A summary of the details of the collected database.
    - Users: 21 - Sensors vectors: 417.128 - Statistics app's usage vectors: 151.034 - Speaker vectors: 2.720 - Call recordings: 629 - Voice messages: 2.091

  16. o

    Gig economy in Poland

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Jan 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maciej Ber��sewicz (2022). Gig economy in Poland [Dataset]. http://doi.org/10.5281/zenodo.5834791
    Explore at:
    Dataset updated
    Jan 10, 2022
    Authors
    Maciej Ber��sewicz
    Area covered
    Poland
    Description

    This repository contains four datasets about the number of active users of selected mobile apps purchased from Selectivv company (https://selectivv.com/). Details regarding the data may be found below: How data was collected: Selectivv uses programmatic advertisements systems that collect information on about 24 mln smartphone users in Poland Apps: Transportation: Uber, Bolt Driver, FREE NOW, iTaxi, Delivery: Glover, Takeaway, Bolt Courier, Wolt; Unit: an active user of a given app. Active = used given app at least 1 minute in a given period (e.g. 1 unit during whole month, half-year). Period: 2018-2018; monthly and half-year data Spatial aggregation: country level, city level, functional area level, voivodeship level. Functional area is defined as here https://stat.gov.pl/en/regional-statistics/regional-surveys/urban-audit/larger-urban-zones-luz/ Activity time: measured by activity time of given app (in hours; average and standard deviation) Datasets: gig-table1-monthly-counts-stats.csv -- the monthly number of active users; gig-table2-halfyear-demo-stats.csv -- the half-year number of active users by socio-demographic variables; gig-table3-halfyear-region-stats.csv -- the half-year number of active users by spatial aggregation; gig-table4-halfyear-activity-stats.csv -- the half-year activity time by working week, weekend, day (8-18) and night (18-8). Detailed description: 1. gig-table1-monthly-counts-stats.csv Structure: month - YYYY-MM-DD -- we set all dates to 15th of given month but actually the data is about the whole month (active users in whole period); 2018-01-15 to 2021-12-15 app -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt) number_of_users -- the number of active users category -- Transportation, Deliver 2. gig-table2-halfyear-demo-stats.csv Structure: gender -- men, women age -- 18-30, 31-50, 51-64 country -- Poland, Ukraine, Other period -- 2018.1, 2018.2, 2019.1, 2019.2, 2020.1, 2021.2 apps -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt) number_of_users -- the number of active users students -- the share of students within a given row parents_of_children_0_4_years -- the share of parents of 0-4 years children in a given row parents_of_children_5_10_years -- the share of parents of 5-10 years children in a given row women_planning_a_baby -- the share of women planing a baby in a given row standard -- the share of standard smartphones in a given row premium_i_phone -- the share of iPhone smartphones in a given row other_premium -- the share of other premium smartphones in a given row category -- Transportation, Delivery 3. gig-table3-halfyear-region-stats.csv Structure: group -- Voivodeship, Functional Area, Cities period -- 2018.1, 2018.2, 2019.1, 2019.2, 2020.1, 2021.2 region_name: Cities -- Bia��ystok, Bydgoszcz, Gda��sk, Gdynia, Gorz��w Wielkopolski, Katowice, Kielce, Krak��w, ����d��, Lublin, Olsztyn, Opole, Pozna��, Rzesz��w, Sopot, Szczecin, Toru��, Warszawa, Wroc��aw, Zielona G��ra Functional Area -- Functional area - Bia��ystok, Functional area - Bydgoszcz, Functional area - Gorz��w Wielkopolski, Functional area - GZM, Functional area - GZM2, Functional area - Kielce, Functional area - Krak��w, Functional area - ����d��, Functional area - Lublin, Functional area - Olsztyn, Functional area - Opole, Functional area - Pozna��, Functional area - Rzesz��w, Functional area - Szczecin, Functional area - Toru��, Functional area - Tr��jmiasto, Functional area - Warszawa, Functional area - Wroc��aw, Functional area - Zielona G��ra Voivodeship -- dolno��l��skie, kujawsko-pomorskie, ����dzkie, lubelskie, lubuskie, ma��opolskie, mazowieckie, opolskie, podkarpackie, podlaskie, pomorskie, ��l��skie, ��wi��tokrzyskie, warmi��sko-mazurskie, wielkopolskie, zachodniopomorskie apps -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt) number_of_users -- the number of active users category -- Transportation, Delivery Please note that: the number of active users in a given functional area = number of active users in a city and a functional area of this city the number of active users in voivodeship = number of active users in a city, its functional area and the rest of the voivodeship where this city and functional area is located More details here: https://stat.gov.pl/en/regional-statistics/regional-surveys/urban-audit/larger-urban-zones-luz/ 4. gig-table4-halfyear-activity-stats.csv Structure: period -- 2018.1, 2018.2, 2019.1, 2019.2, 2020.1, 2021.2 apps -- app name (Uber, Bolt Driver, FREE NOW, iTaxi, Glover, Takeaway, Bolt Courier, Wolt) day -- Mondays-Thursdays, Fridays-Sundays hour -- day (8-18), night (18-8) activity_time -- in hours statistic -- Average, Std.Dev. (standard deviation) category -- Transportation, Delivery The project was financed within the Regional Initiative for Excellence programme of the Minister of Science and Higher Education of Poland, years 2019-2022, grant no. 0...

  17. Internet penetration worldwide 2024, by country

    • statista.com
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Internet penetration worldwide 2024, by country [Dataset]. https://www.statista.com/study/175878/mobile-apps-usage-in-saudi-arabia/
    Explore at:
    Dataset updated
    Nov 4, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    From the selected regions, the ranking by population share with internet access is led by Bahrain with 98 percent and is followed by the United Arab Emirates (98 percent). In contrast, the ranking is trailed by Uganda with 13.62 percent, recording a difference of 84.38 percentage points to Bahrain. The penetration rate refers to the share of the total population having access to the internet via any means. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).

  18. u

    Authcode - Dataset

    • portalinvestigacion.um.es
    • ieee-dataport.org
    Updated 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio; Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio (2020). Authcode - Dataset [Dataset]. https://portalinvestigacion.um.es/documentos/668fc48eb9e7c03b01be0e33
    Explore at:
    Dataset updated
    2020
    Authors
    Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio; Sánchez Sánchez, Pedro Miguel; Fernández Maimó, Lorenzo; Huertas Celdrán, Alberto; Martínez Pérez, Gregorio
    Description

    Intending to cover the existing gap regarding behavioral datasets modelling interactions of users with individual a multiple devices in Smart Office to later authenticate them continuously, we publish the following collection of datasets, which has been generated after having five users interacting for 60 days with their personal computer and mobile devices. Below you can find a brief description of each dataset.Dataset 1 (2.3 GB). This dataset contains 92975 vectors of features (8096 per vector) that model the interactions of the five users with their personal computers. Each vector contains aggregated data about keyboard and mouse activity, as well as application usage statistics. More info about features meaning can be found in the readme file. Originally, the number of features of this dataset was 24 065 but after filtering the constant features, this number was reduced to 8096. There was a high number of constant features to 0 since each possible digraph (two keys combination) was considered when collecting the data. However, there are many unusual digraphs that the users never introduced in their computers, so these features were deleted in the uploaded dataset.Dataset 2 (8.9 MB). This dataset contains 61918 vectors of features (15 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about application usage statistics. More info about features meaning can be found in the readme file.Dataset 3 (28.9 MB). This dataset contains 133590vectors of features (42 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about the gyroscope and Accelerometer sensors.More info about features meaning can be found in the readme file.Dataset 4 (162.4 MB). This dataset contains 145465vectors of features (241 per vector)that model the interactions of the five users with both personal computers and mobile devices. Each vector contains the aggregation of the most relevant features of both devices. More info about features meaning can be found in the readme file.Dataset 5 (878.7 KB). This dataset is composed of 7 datasets. Each one of them contains an aggregation of feature vectors generated from the active/inactive intervals of personal computers and mobile devices by considering different time windows ranging from 1h to 24h.1h: 4074 vectors2h: 2149 vectors3h: 1470 vectors4h: 1133 vectors6h: 770 vectors12h: 440 vectors24h: 229 vectors

  19. d

    Factori USA Consumer Graph Data | socio-demographic, location, interest and...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori USA Consumer Graph Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

    1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
    2. Demographics - Gender, Age Group, Marital Status, Language etc.
    3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
    4. Persona - Consumer type, Communication preferences, Family type, etc
    5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
    6. Household - Number of Children, Number of Adults, IP Address, etc.
    7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
    8. Firmographics - Industry, Company, Occupation, Revenue, etc
    9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
    10. Auto - Car Make, Model, Type, Year, etc.
    11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    Consumer Graph Use Cases:

    360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.

    Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

    Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

    Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

    Using Factori Consumer Data graph you can solve use cases like:

    Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

    Lookalike Modeling

    Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

    And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

    Here's the schema of Consumer Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
    credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
    mortgage_loan2_type mortgage_lender_code
    mortgage_loan2_render_code
    mortgage_lender mortgage_loan2_lender
    mortgage_loan2_ratetype mortgage_rate
    mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
    office_census_block_group
    office_census_tract office_county_code
    company_phone
    company_credit_score
    company_csa_code
    company_dpbc
    company_franchiseflag
    company_facebookurl company_linkedinurl company_twitterurl
    company_website company_fortune_rank
    company_government_type company_headquarters_branch company_home_business
    company_industry
    company_num_pcs_used
    company_num_employees
    company_firm_individual company_msa company_msa_name
    company_naics_code
    company_naics_description
    company_naics_code2 company_naics_description2
    company_sic_code2
    company_sic_code2_desc...

  20. d

    TagX Web Browsing clickstream Data - 300K Users North America, EU - GDPR -...

    • datarade.ai
    .json, .csv, .xls
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TagX (2024). TagX Web Browsing clickstream Data - 300K Users North America, EU - GDPR - CCPA Compliant [Dataset]. https://datarade.ai/data-products/tagx-web-browsing-clickstream-data-300k-users-north-america-tagx
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    TagX
    Area covered
    Andorra, Switzerland, Luxembourg, Macedonia (the former Yugoslav Republic of), Ireland, Japan, United States of America, Finland, China, Holy See
    Description

    TagX Web Browsing Clickstream Data: Unveiling Digital Behavior Across North America and EU Unique Insights into Online User Behavior TagX Web Browsing clickstream Data offers an unparalleled window into the digital lives of 1 million users across North America and the European Union. This comprehensive dataset stands out in the market due to its breadth, depth, and stringent compliance with data protection regulations. What Makes Our Data Unique?

    Extensive Geographic Coverage: Spanning two major markets, our data provides a holistic view of web browsing patterns in developed economies. Large User Base: With 300K active users, our dataset offers statistically significant insights across various demographics and user segments. GDPR and CCPA Compliance: We prioritize user privacy and data protection, ensuring that our data collection and processing methods adhere to the strictest regulatory standards. Real-time Updates: Our clickstream data is continuously refreshed, providing up-to-the-minute insights into evolving online trends and user behaviors. Granular Data Points: We capture a wide array of metrics, including time spent on websites, click patterns, search queries, and user journey flows.

    Data Sourcing: Ethical and Transparent Our web browsing clickstream data is sourced through a network of partnered websites and applications. Users explicitly opt-in to data collection, ensuring transparency and consent. We employ advanced anonymization techniques to protect individual privacy while maintaining the integrity and value of the aggregated data. Key aspects of our data sourcing process include:

    Voluntary user participation through clear opt-in mechanisms Regular audits of data collection methods to ensure ongoing compliance Collaboration with privacy experts to implement best practices in data anonymization Continuous monitoring of regulatory landscapes to adapt our processes as needed

    Primary Use Cases and Verticals TagX Web Browsing clickstream Data serves a multitude of industries and use cases, including but not limited to:

    Digital Marketing and Advertising:

    Audience segmentation and targeting Campaign performance optimization Competitor analysis and benchmarking

    E-commerce and Retail:

    Customer journey mapping Product recommendation enhancements Cart abandonment analysis

    Media and Entertainment:

    Content consumption trends Audience engagement metrics Cross-platform user behavior analysis

    Financial Services:

    Risk assessment based on online behavior Fraud detection through anomaly identification Investment trend analysis

    Technology and Software:

    User experience optimization Feature adoption tracking Competitive intelligence

    Market Research and Consulting:

    Consumer behavior studies Industry trend analysis Digital transformation strategies

    Integration with Broader Data Offering TagX Web Browsing clickstream Data is a cornerstone of our comprehensive digital intelligence suite. It seamlessly integrates with our other data products to provide a 360-degree view of online user behavior:

    Social Media Engagement Data: Combine clickstream insights with social media interactions for a holistic understanding of digital footprints. Mobile App Usage Data: Cross-reference web browsing patterns with mobile app usage to map the complete digital journey. Purchase Intent Signals: Enrich clickstream data with purchase intent indicators to power predictive analytics and targeted marketing efforts. Demographic Overlays: Enhance web browsing data with demographic information for more precise audience segmentation and targeting.

    By leveraging these complementary datasets, businesses can unlock deeper insights and drive more impactful strategies across their digital initiatives. Data Quality and Scale We pride ourselves on delivering high-quality, reliable data at scale:

    Rigorous Data Cleaning: Advanced algorithms filter out bot traffic, VPNs, and other non-human interactions. Regular Quality Checks: Our data science team conducts ongoing audits to ensure data accuracy and consistency. Scalable Infrastructure: Our robust data processing pipeline can handle billions of daily events, ensuring comprehensive coverage. Historical Data Availability: Access up to 24 months of historical data for trend analysis and longitudinal studies. Customizable Data Feeds: Tailor the data delivery to your specific needs, from raw clickstream events to aggregated insights.

    Empowering Data-Driven Decision Making In today's digital-first world, understanding online user behavior is crucial for businesses across all sectors. TagX Web Browsing clickstream Data empowers organizations to make informed decisions, optimize their digital strategies, and stay ahead of the competition. Whether you're a marketer looking to refine your targeting, a product manager seeking to enhance user experience, or a researcher exploring digital trends, our cli...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
arul08 (2020). Mobile_usage_dataset_individual_person [Dataset]. https://www.kaggle.com/arul08/mobile-usage-dataset-individual-person/discussion
Organization logo

Mobile_usage_dataset_individual_person

mobile usage data set apps usage,unlock count, every minute usage

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 14, 2020
Dataset provided by
Kagglehttp://kaggle.com/
Authors
arul08
Description

Do you know?

Do you know how much time you spend on an app? Do you know the total use time of a day or average use time of an app?

What it consists of?

This data set consists of - how many times a person unlocks his phone. - how much time he spends on every app on every day. - how much time he spends on his phone.

It lists the usage time of apps for each day.

What we can do?

Use the test data to find the Total Minutes that we can use the given app in a day. we can get a clear stats of apps usage. This data set will show you about the persons sleeping behavior as well as what app he spends most of his time. with this we can improve the productivity of the person.

The dataset was collected from the app usage app.

Search
Clear search
Close search
Google apps
Main menu