https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Wael Shaher
Released under CC0: Public Domain
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This DataSet Contains Detailed Insights into Mobile App Usage Patterns, including ScreenTime, notifications received, and app openings. The data spans multiple days in August and some popular apps, offering a granular view of digital behavior.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.
We built a crawler to collect data from the Google Play store including the application's metadata and APK files. The manifest files were extracted from the APK files and then processed to extract the features. The data set is composed of 870,515 records/apps, and for each app we produced 48 features. The data set was used to built and test two bootstrap aggregating of multiple XGBoost machine learning classifiers. The dataset were collected between April 2017 and November 2018. We then checked the status of these applications on three different occasions; December 2018, February 2019, and May-June 2019.
As COVID-19 continues to spread across the world, a growing number of malicious campaigns are exploiting the pandemic. It is reported that COVID-19 is being used in a variety of online malicious activities, including Email scam, ransomware and malicious domains. As the number of the afflicted cases continue to surge, malicious campaigns that use coronavirus as a lure are increasing. Malicious developers take advantage of this opportunity to lure mobile users to download and install malicious apps.
However, besides a few media reports, the coronavirus-themed mobile malware has not been well studied. Our community lacks of the comprehensive understanding of the landscape of the coronavirus-themed mobile malware, and no accessible dataset could be used by our researchers to boost COVID-19 related cybersecurity studies.
We make efforts to create a daily growing COVID-19 related mobile app dataset. By the time of mid-November, we have curated a dataset of 4,322 COVID-19 themed apps, and 611 of them are considered to be malicious. The number is growing daily and our dataset will update weekly. For more details, please visit https://covid19apps.github.io
This dataset includes the following files:
(1) covid19apps.xlsx
In this file, we list all the COVID-19 themed apps information, including apk file hashes, released date, package name, AV-Rank, etc.
(2)covid19apps.zip
We put the COVID-19 themed apps Apk samples in zip files . In order to reduce the size of a single file, we divide the sample into multiple zip files for storage. And the APK file name after the file SHA256.
If your papers or articles use our dataset, please use the following bibtex reference to cite our paper: https://arxiv.org/abs/2005.14619
(Accepted to Empirical Software Engineering)
@misc{wang2021virus, title={Beyond the Virus: A First Look at Coronavirus-themed Mobile Malware}, author={Liu Wang and Ren He and Haoyu Wang and Pengcheng Xia and Yuanchun Li and Lei Wu and Yajin Zhou and Xiapu Luo and Yulei Sui and Yao Guo and Guoai Xu}, year={2021}, eprint={2005.14619}, archivePrefix={arXiv}, primaryClass={cs.CR} }
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains fictional reviews from a hypothetical mobile application, generated for demo purposes in various projects. The reviews include detailed feedback from users across different countries and platforms, with additional attributes such as star ratings, like/dislike counts, and issue flags. The data was later used as an input for a large language model (LLM) to generate labeled outputs, which are included in a separate dataset named labeled_app_store_reviews. This labeled dataset can be used for machine learning tasks such as sentiment analysis, text classification, or even A/B testing simulations.
This dataset contains 54,987 UI screenshots and the metadata from 7,748 Android applications belonging to 25 application categories
Download link: https://www.dropbox.com/sh/kfkhevxykzwputb/AAAhL6ipmOg4zZn4jUL_myF0a?dl=0
https://brightdata.com/licensehttps://brightdata.com/license
This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises 10,000 user reviews of the BCA Mobile app collected from the Google Play Store between December 24, 2023, and June 12, 2024. Each review includes the user's name, the rating they provided (ranging from 1 to 5 stars), the timestamp of when the review was created, and the text content of the review. The dataset is in Indonesian and focuses on feedback from users in Indonesia. This data can be used to perform sentiment analysis, understand user experiences, identify common issues, and assess the overall performance of the BCA Mobile app during the specified timeframe. The reviews are sorted based on the newest first, providing the latest feedback at the top.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
During the study period, with the help of 292 participants, we were able to collect 599,635 app usage records. Here, we summarize the main characteristics of the participants based on the submitted surveys. 59% of the participants were female and 50% aged between 25 and 34. Participants were from all kinds of educational backgrounds ranging from high school diploma to PhD. In particular, 32% of them had a college degree, followed by 30% with a bachelor's degree. Smartphone was the main device used for connecting to the Internet for 53% of the participants, followed by laptop (25%). Among the participants, 67% used their smartphones more often for personal reasons rather than work. Finally, half of the participants stated that they use their smartphones 4 hours a day or more
Aaditya1/Mobile-Application-Data dataset hosted on Hugging Face and contributed by the HF Datasets community
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.
Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.
Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.
Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises user feedback data collected from 15 globally acclaimed mobile applications, spanning diverse categories. The included applications are among the most downloaded worldwide, providing a rich and varied source for analysis. The dataset is particularly suitable for Natural Language Processing (NLP) applications, such as text classification and topic modeling. List of Included Applications:
TikTok Instagram Facebook WhatsApp Telegram Zoom Snapchat Facebook Messenger Capcut Spotify YouTube HBO Max Cash App Subway Surfers Roblox Data Columns and Descriptions: Data Columns and Descriptions:
review_id: Unique identifiers for each user feedback/application review. content: User-generated feedback/review in text format. score: Rating or star given by the user. TU_count: Number of likes/thumbs up (TU) received for the review. app_id: Unique identifier for each application. app_name: Name of the application. RC_ver: Version of the app when the review was created (RC). Terms of Use: This dataset is open access for scientific research and non-commercial purposes. Users are required to acknowledge the authors' work and, in the case of scientific publication, cite the most appropriate reference: M. H. Asnawi, A. A. Pravitasari, T. Herawan, and T. Hendrawati, "The Combination of Contextualized Topic Model and MPNet for User Feedback Topic Modeling," in IEEE Access, vol. 11, pp. 130272-130286, 2023, doi: 10.1109/ACCESS.2023.3332644.
Researchers and analysts are encouraged to explore this dataset for insights into user sentiments, preferences, and trends across these top mobile applications. If you have any questions or need further information, feel free to contact the dataset authors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With academical purposes for the Master in Data Science at UOC, this data extraction project is carried out using Web Scraping techniques on the Exodus-Privacy website, which is dedicated to analyze security and privacy aspects in Android applications. The dataset about user privacy treatment by mobile applications, provides information on trackers that have been included in the application and the device permissions that the user must accept at the time of installation. In addition, it provides more interesting application features for analytical processing of mobile applications. Dataframe files: · exodus.zip: Contains de icon attribute within the dataset file exodus.json (3G) in a [RGBA] 32x32 list format. · exodusNoIcon.zip: Contains de dataset file exodusNoIcon.json (100M) with 153.373 png files. Each file is named with the Id attribute within the dataset file. Dataframe attributes:
{
"id": {
"Id": id,
"Name": "name",
"Tracker_count": trackersCount,
"Permissions_count": permissionsCount,
"Version": "version",
"Downloads": "downloads",
"Analysis_date": "analysisDate",
"Trackers": [
{
"Tracker Name": [
"trackerPurpose"
]
}
],
"Permissions": [
"permission",
],
"Permissions_warning_count": permissionWarningCount,
"Developer": "developer",
"Country": "country",
"Icon": [
[
R,
G,
B,
A
]
]
}
}
https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset provides insights into the daily mobile usage patterns of 1,000 users, covering aspects such as screen time, app usage, and user engagement across different app categories.
It includes a diverse range of users based on age, gender, and location.
The data focuses on total app usage, time spent on social media, productivity, and gaming apps, along with overall screen time.
This information is valuable for understanding behavioral trends and app usage preferences, making it useful for app developers, marketers, and UX researchers.
This dataset is useful for analyzing mobile engagement, app usage habits, and the impact of demographic factors on mobile behavior. It can help identify trends for marketing, app development, and user experience optimization.
This dataset enables a deeper understanding of mobile user behavior and app engagement across different demographics.
Key outcomes include insights into app usage preferences, daily screen time habits, and the impact of age, gender, and location on mobile behavior.
This analysis can help identify patterns for improving user experience, tailoring marketing strategies, and optimizing app development for different user segments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nowadays, mobile applications (a.k.a., apps) are used by over two billion users for every type of need, including social and emergency connectivity. Their pervasiveness in today world has inspired the software testing research community in devising approaches to allow developers to better test their apps and improve the quality of the tests being developed. In spite of this research effort, we still notice a lack of empirical analyses aiming at assessing the actual quality of test cases manually developed by mobile developers: this perspective could provide evidence-based findings on the future research directions in the field as well as on the current status of testing in the wild. As such, we performed a large-scale empirical study targeting 1,780 open-source Android apps and aiming at assessing (1) the extent to which these apps are actually tested, (2) how well-designed are the available tests, and (3) what is their effectiveness. The key results of our study show that mobile developers still tend not to properly test their apps, possibly because of time to market requirements. Furthermore, we discovered that the test cases of the considered apps have a low (i) design quality, both in terms of test code metrics and test smells, and (ii) effectiveness when considering code coverage as well as assertion density.
Mobile app usage log data used to mine contextual behavioral rules of individual mobile phone users
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes network traffic data from more than 50 Android applications across 5 different scenarios. The applications are consistent in all scenarios, but other factors like location, device, and user vary (see Table 2 in the paper). The current repository pertains to Scenario A. Within the repository, for each application, there is a compressed file containing the relevant PCAP files. The PCAP files follow the naming convention: {Application Name}{Scenario ID}{#Trace}_Final.pcap.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AndroR2 is a dataset of 90 manually reproduced bug reports for Android apps listed on Google Play and hosted on GitHub, systematically collected via an in-depth analysis of 459 reports extracted from the GitHub issue tracker. For each reproduced report, AndroR2 includes the original bug report, an apk file for the buggy version of the app, an executable reproduction script, and metadata regarding the quality of the reproduction steps associated with the original report. We believe that the AndroR2 dataset can be used to facilitate research in automatically analyzing, understanding, reproducing, localizing, and fixing bugs for mobile applications as well as other software maintenance activities more broadly.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Wael Shaher
Released under CC0: Public Domain