100+ datasets found
  1. RICO dataset

    • kaggle.com
    Updated Dec 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onur Gunes (2021). RICO dataset [Dataset]. https://www.kaggle.com/datasets/onurgunes1993/rico-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Onur Gunes
    Description

    Context

    Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.

    Content

    Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.

    Acknowledgements

    UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico

    Inspiration

    The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.

  2. R

    Mobile Detection Dataset

    • universe.roboflow.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    asu (2023). Mobile Detection Dataset [Dataset]. https://universe.roboflow.com/asu-b6mtv/mobile-detection-l2iov/model/7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 29, 2023
    Dataset authored and provided by
    asu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Mobile Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Distracted Driver Detection: This model can be incorporated into vehicular systems to alert when drivers are distracted by activities such as mobile use, drinking, eating, or smoking, thereby improving road safety.

    2. Public Health Research: Researchers can use this model to anonymously collect data in public spaces to study the prevalence of unhealthy habits like smoking and high consumption of fast food, informing public health initiatives.

    3. Employee Productivity Monitoring: Companies could use this model to monitor employee focus and productivity, identifying when workers are distracted by mobile phones, eating, or smoking during work hours.

    4. Parental Control Applications: The model can be used to monitor children's activity, alerting parents if the child uses a mobile phone excessively or is detected smoking.

    5. Consumer Behaviour Analysis: Retail businesses can use the model to understand the habits of their customers better, such as the prevalence of mobile use in-store, food and drink consumption patterns, and smoking habits.

  3. u

    Data from: MobileWell400+: A Large-Scale Multivariate Longitudinal Mobile...

    • produccioncientifica.ucm.es
    • zenodo.org
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Banos, Oresti; Damas, Miguel; Goicoechea, Carmen; Perakakis, Pandelis; Pomares, Hector; Rodriguez-Leon, Ciro; Sanabria, Daniel; Villalonga, Claudia; Banos, Oresti; Damas, Miguel; Goicoechea, Carmen; Perakakis, Pandelis; Pomares, Hector; Rodriguez-Leon, Ciro; Sanabria, Daniel; Villalonga, Claudia (2024). MobileWell400+: A Large-Scale Multivariate Longitudinal Mobile Dataset for Investigating Individual and Collective Well-Being [Dataset]. https://produccioncientifica.ucm.es/documentos/668fc499b9e7c03b01be2372
    Explore at:
    Dataset updated
    2024
    Authors
    Banos, Oresti; Damas, Miguel; Goicoechea, Carmen; Perakakis, Pandelis; Pomares, Hector; Rodriguez-Leon, Ciro; Sanabria, Daniel; Villalonga, Claudia; Banos, Oresti; Damas, Miguel; Goicoechea, Carmen; Perakakis, Pandelis; Pomares, Hector; Rodriguez-Leon, Ciro; Sanabria, Daniel; Villalonga, Claudia
    Description

    This study engaged 409 participants over a period spanning from July 10 to August 8, 2023, ensuring representation across various demographic factors: 221 females, 186 males, 2 non-binary, year of birth between 1951 and 2005, with varied annual incomes and from 15 Spanish regions. The MobileWell400+ dataset, openly accessible, encompasses a wide array of data collected via the participants' mobile phone, including demographic, emotional, social, behavioral, and well-being data. Methodologically, the project presents a promising avenue for uncovering new social, behavioral, and emotional indicators, supplementing existing literature. Notably, artificial intelligence is considered to be instrumental in analysing these data, discerning patterns, and forecasting trends, thereby advancing our comprehension of individual and population well-being. Ethical standards were upheld, with participants providing informed consent.

    The following is a non-exhaustive list of collected data:

    Data continuously collected through the participants' smartphone sensors: physical activity (resting, walking, driving, cycling, etc.), name of detected WiFi networks, connectivity type (WiFi, mobile, none), ambient light, ambient noise, and status of the device screen (on, off, locked, unlocked).

    Data corresponding to an initial survey prompted via the smartphone, with information related to demographic data, effects and COVID vaccination, average hours of physical activity, and answers to a series of questions to measure mental health, many of them taken from internationally recognised psychological and well-being scales (PANAS, PHQ, GAD, BRS and AAQ), social isolation (TILS) and economic inequality perception.

    Data corresponding to daily surveys prompted via the smartphone, where variables related to mood (valence, activation, energy and emotional events) and social interaction (quantity and quality) are measured.

    Data corresponding to weekly surveys prompted via the smartphone, where information on overall health, hours of physical activity per week, lonileness, and questions related to well-being are asked.

    Data corresponding to an final survey prompted via the smartphone, consisting of similar questions to the ones asked in the initial survey, namely psychological and well-being items (PANAS, PHQ, GAD, BRS and AAQ), social isolation (TILS) and economic inequality perception questions.

    For a more detailed description of the study please refer to MobileWell400+StudyDescription.pdf.

    For a more detailed description of the collected data, variables and data files please refer to MobileWell400+FilesDescription.pdf.

  4. Mobile-Dataset

    • kaggle.com
    Updated Oct 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harsh Kumar Singh (2023). Mobile-Dataset [Dataset]. https://www.kaggle.com/datasets/scorteen/mobile-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 15, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Harsh Kumar Singh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Harsh Kumar Singh

    Released under Apache 2.0

    Contents

  5. i

    Encrypted communication dataset for mobile applications

    • ieee-dataport.org
    Updated May 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Snasel (2022). Encrypted communication dataset for mobile applications [Dataset]. https://ieee-dataport.org/documents/encrypted-communication-dataset-mobile-applications
    Explore at:
    Dataset updated
    May 26, 2022
    Authors
    Daniel Snasel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    the device was left without user interaction for 5 minutes.

  6. d

    Mobile Location Data | United States | +300M Unique Devices | +150M Daily...

    • datarade.ai
    .json, .xml, .csv
    Updated Jul 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quadrant (2020). Mobile Location Data | United States | +300M Unique Devices | +150M Daily Users | +200B Events / Month [Dataset]. https://datarade.ai/data-products/mobile-location-data-us
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Jul 7, 2020
    Dataset authored and provided by
    Quadrant
    Area covered
    United States
    Description

    Quadrant provides Insightful, accurate, and reliable mobile location data.

    Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.

    These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.

    We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.

    We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.

    Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.

    Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.

  7. R

    Mobile Usage Detection Dataset

    • universe.roboflow.com
    zip
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Workplace Safety System (2025). Mobile Usage Detection Dataset [Dataset]. https://universe.roboflow.com/workplace-safety-system/mobile-usage-detection/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Workplace Safety System
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Mobiles Bounding Boxes
    Description

    Mobile Usage Detection

    ## Overview
    
    Mobile Usage Detection is a dataset for object detection tasks - it contains Mobiles annotations for 497 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  8. MI-BMPI: Motor Imagery Brain--Mobil Phone Interface Dataset

    • figshare.com
    bin
    Updated Dec 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cagatay Murat Yilmaz (2024). MI-BMPI: Motor Imagery Brain--Mobil Phone Interface Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.26893396.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 23, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Cagatay Murat Yilmaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains two significant mobile gestures for brain-mobile phone interfaces (BMPIs: (i) motor imagery of tapping on the screen of a mobile device and (ii) motor imagery of swiping down with a thumb on the screen of a mobile device. The raw EEG signals were recorded using the Emotiv EPOC Flex (Model 1.0) headset with saline-based sensors and Emotiv Pro (2.5.1.227) software. The sampling rate is 128 Hz. Each epoch contains 3.5 s signals. The first 1 s signal is recorded before the MI task starts (5 s to 6 s interval in the timing plan), and the next 2.5 s signal is recorded during the MI execution (6 s to 8.5 s interval in the timing plan). Please refer to the reference study below for details.The file names are constructed as follows. For example, taking "D01_s1" and "D01" in the file name refers to subject "01", and "s1" refers to session 1 ("s2" refers to session 2). The label data is given in a separate folder in Matlab format.The data is provided in two different forms for use (the desired is preferable):The set_files folder contains the data prepared for import in EEGLAB. EEGLAB must be installed, and the set files must be imported to access the data. The data is in epoched format in 3D (channels, sample_points, trials). With the EEGLAB interface, all the data can be accessed, and EEGLAB functions can be executed. Also, the EEG variable, which is built after importing the *.set file, contains all the information about the experiment. With the EEG.data variable, epoched data in the dimensions (channels, sample_points, trials) can be accessed.The mat_files folder contains data in mat file format. In these files, epoched data is stored in a 3-D array of size (channels, sample_points, trials). You can access the data as follows. For example, all data from the first session of subject D01 can be retrieved as follows. Load the mat file with the load('D01_s1.mat') code, and access the data using the EEG variable in the workspace. For instance, 13x448 x101 sized epoched data (channels, sample_points, trials) can be retrieved with the command EEG.data. Other information about the experiments and subjects is also included in the fields of the EEG variable.This research was supported by the Turkish Scientific and Research Council (TUBITAK) under project number 119E397.The following article must be used in academic studies with reference. Permission must be obtained for use in commercial studies.Journal: Neural Computing and Applications.DOI : 10.1007/s00521-024-10917-5.Title : MI-BMPI motor imagery brain–mobile phone dataset and performance evaluation of voting ensembles utilizing QPDM.

  9. K-EmoPhone, A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Feb 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soowon Kang; Soowon Kang; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee (2024). K-EmoPhone, A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and Attention Labels [Dataset]. http://doi.org/10.5281/zenodo.7606611
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Soowon Kang; Soowon Kang; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee; Woohyeok Choi; Cheul Young Park; Narae Cha; Auk Kim; Ahsan Habib Khandoker; Leontios Hadjileontiadis; Heepyung Kim; Yong Jeong; Uichin Lee
    Description

    ABSTRACT: With the popularization of low-cost mobile and wearable sensors, prior studies have utilized such sensors to track and analyze people's mental well-being, productivity, and behavioral patterns. However, there still is a lack of open datasets collected in-the-wild contexts with affective and cognitive state labels such as emotion, stress, and attention, which would limit the advances of research in affective computing and human-computer interaction. This work presents K-EmoPhone, an in-the-wild multi-modal dataset collected from 77 university students for seven days. This dataset contains (i) continuous probing of peripheral physiological signals and mobility data measured by commercial off-the-shelf devices; (ii) context and interaction data collected from individuals' smartphones; and (iii) 5,582 self-reported affect states, such as emotion, stress, attention, and disturbance, acquired by the experience sampling method. We anticipate that the presented dataset will contribute to the advancement of affective computing, emotion intelligence technologies, and attention management based on mobile and wearable sensor data.

    Last update: Apr. 12, 2023

    -----------------------------

    * Version 1.1.2 (Jun. 3, 2023)

    • Published the dataset at Scientific Data Journal.
    • Updated end-user license agreement.

    * Version 1.1.1 (Apr. 12, 2023)

    • Updated file description and abstract.

    * Version 1.1.0 (Feb. 5, 2023)

    • Updated the quality of the sensor data information.
    • Deleted three participants (P27, P59, P65) due to the low quality issue.

    * Version 1.0.0 (Aug. 3, 2022)

    • Added P##.zip files, where each P## means the separate participant.
    • Added SubjData.zip file, which includes individual characteristics information and labels.
  10. Z

    Data from: YJMob100K: City-Scale and Longitudinal Dataset of Anonymized...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shimizu, Toru (2024). YJMob100K: City-Scale and Longitudinal Dataset of Anonymized Human Mobility Trajectories [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8111992
    Explore at:
    Dataset updated
    Apr 21, 2024
    Dataset provided by
    Yabe, Takahiro
    Shimizu, Toru
    Sekimoto, Yoshihide
    Pentland, Alex
    Moro, Esteban
    Tsubouchi, Kota
    Sezaki, Kaoru
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The YJMob100K human mobility datasets (YJMob100K_dataset1.csv.gz and YJMob100K_dataset1.csv.gz) contain the movement of a total of 100,000 individuals across a 75 day period, discretized into 30-minute intervals and 500 meter grid cells. The first dataset contains the movement of 80,000 individuals across a 75-day business-as-usual period, while the second dataset contains the movement of 20,000 individuals across a 75-day period (including the last 15 days during an emergency) with unusual behavior.

    While the name or location of the city is not disclosed, the participants are provided with points-of-interest (POIs; e.g., restaurants, parks) data for each grid cell (~85 dimensional vector) as supplementary information (cell_POIcat.csv.gz). The list of 85 POI categories can be found in POI_datacategories.csv.

    For details of the dataset, see Data Descriptor:

    Yabe, T., Tsubouchi, K., Shimizu, T., Sekimoto, Y., Sezaki, K., Moro, E., & Pentland, A. (2024). YJMob100K: City-scale and longitudinal dataset of anonymized human mobility trajectories. Scientific Data, 11(1), 397. https://www.nature.com/articles/s41597-024-03237-9

    --- Details about the Human Mobility Prediction Challenge 2023 (ended November 13, 2023) ---

    The challenge takes place in a mid-sized and highly populated metropolitan area, somewhere in Japan. The area is divided into 500 meters x 500 meters grid cells, resulting in a 200 x 200 grid cell space.

    The human mobility datasets (task1_dataset.csv.gz and task2_dataset.csv.gz) contain the movement of a total of 100,000 individuals across a 90 day period, discretized into 30-minute intervals and 500 meter grid cells. The first dataset contains the movement of a 75 day business-as-usual period, while the second dataset contains the movement of a 75 day period during an emergency with unusual behavior.

    There are 2 tasks in the Human Mobility Prediction Challenge.

    In task 1, participants are provided with the full time series data (75 days) for 80,000 individuals, and partial (only 60 days) time series movement data for the remaining 20,000 individuals (task1_dataset.csv.gz). Given the provided data, Task 1 of the challenge is to predict the movement patterns of the individuals in the 20,000 individuals during days 60-74. Task 2 is similar task but uses a smaller dataset of 25,000 individuals in total, 2,500 of which have the locations during days 60-74 masked and need to be predicted (task2_dataset.csv.gz).

    While the name or location of the city is not disclosed, the participants are provided with points-of-interest (POIs; e.g., restaurants, parks) data for each grid cell (~85 dimensional vector) as supplementary information (which is optional for use in the challenge) (cell_POIcat.csv.gz).

    For more details, see https://connection.mit.edu/humob-challenge-2023

  11. LISTOS Surface Mobile Platform In-Situ Data - Dataset - NASA Open Data...

    • data.nasa.gov
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). LISTOS Surface Mobile Platform In-Situ Data - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/listos-surface-mobile-platform-in-situ-data-3fd0b
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    LISTOS_SurfaceMobile_InSitu_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) surface mobile data collected via mobile platforms during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. This product features data collected by the Connecticut Department of Energy and Environmental Protection (CT DEEP) special purpose mobile monitor located on the Park City ferry on Long Island Sound and other mobile platforms. Data collection is complete.The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.

  12. Z

    Data from: A 24-hour dynamic population distribution dataset based on mobile...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Feb 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olle Järv (2022). A 24-hour dynamic population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4724388
    Explore at:
    Dataset updated
    Feb 16, 2022
    Dataset provided by
    Henrikki Tenkanen
    Claudia Bergroth
    Olle Järv
    Matti Manninen
    Tuuli Toivonen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Finland, Helsinki Metropolitan Area
    Description

    Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.

    In this dataset:

    We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.

    Please cite this dataset as:

    Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4

    Organization of data

    The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:

    HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.

    HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.

    HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.

    target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.

    Column names

    YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.

    H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)

    In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.

    License Creative Commons Attribution 4.0 International.

    Related datasets

    Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612

    Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564

  13. N

    Mobile, AL Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Mobile, AL Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Mobile from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/mobile-al-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mobile, Alabama
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Mobile population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Mobile across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Mobile was 182,595, a 0.38% decrease year-by-year from 2022. Previously, in 2022, Mobile population was 183,290, a decline of 1.02% compared to a population of 185,176 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Mobile decreased by 20,735. In this period, the peak population was 203,330 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Mobile is shown in this column.
    • Year on Year Change: This column displays the change in Mobile population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Mobile Population by Year. You can refer the same here

  14. f

    Identity Data | Global | Reach - 500 Million+ Records for Enhanced Customer...

    • factori.ai
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Identity Data | Global | Reach - 500 Million+ Records for Enhanced Customer Data & Multi-Platform Communication [Dataset]. https://www.factori.ai/datasets/identity/
    Explore at:
    Dataset updated
    Jul 15, 2025
    License

    https://www.factori.ai/privacy-policyhttps://www.factori.ai/privacy-policy

    Area covered
    Global
    Description

    Our identity dataset allows businesses to submit their customer IDs, which our platform matches to identities across various platforms and devices. This process opens up new communication channels by using multiple data points to determine or probabilistically match users to their corresponding identities.

    Identity Data Reach

    Our dataset links device data to hashed email data from first-party data owners. Leveraging our identity graph, we connect IP addresses, device IDs, and other platform identities, enabling more comprehensive communication channels.

    • Record Count: 500 Million+
    • Updated: Monthly
    • Historical Data: Past 6 Months

    Data Export Methodology

    We dynamically collect and update data, providing the latest insights through Data Clean Rooms. This method ensures privacy compliance while enriching your data according to your specific requirements.

    Use Cases

    Our identity dataset is crucial for identity resolution and data enrichment, empowering businesses to enhance their customer data and expand their reach across multiple platforms and devices.

  15. N

    Mobile, AL Age Group Population Dataset: A Complete Breakdown of Mobile Age...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Mobile, AL Age Group Population Dataset: A Complete Breakdown of Mobile Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/45374dc6-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mobile, Alabama
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Mobile population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Mobile. The dataset can be utilized to understand the population distribution of Mobile by age. For example, using this dataset, we can identify the largest age group in Mobile.

    Key observations

    The largest age group in Mobile, AL was for the group of age 20 to 24 years years with a population of 14,449 (7.81%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Mobile, AL was the 80 to 84 years years with a population of 3,589 (1.94%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Mobile is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Mobile total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Mobile Population by Age. You can refer the same here

  16. f

    Source Code for analysing smartphone use data.

    • plos.figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sally Andrews; David A. Ellis; Heather Shaw; Lukasz Piwek (2023). Source Code for analysing smartphone use data. [Dataset]. http://doi.org/10.1371/journal.pone.0139004.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Sally Andrews; David A. Ellis; Heather Shaw; Lukasz Piwek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Source code, example screenprobe.csv data file, and README.txt for processing, visualising and analysing smartphone use data. csv2data.m converts ScreenProbe.csv to usable data, while barcode.m allows visualisations to be generated. descriptives.m generates descriptive statistics that can be used for quantitative analysis. Source code requires Matlab version 2014b or later, but does not require any specific toolboxes. (ZIP)

  17. s

    Mobile Location Data Belgium

    • spotzi.com
    csv
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spotzi. Location Intelligence Dashboards for Businesses. (2023). Mobile Location Data Belgium [Dataset]. https://www.spotzi.com/en/data-catalog/datasets/mobile-location-data-belgium/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 9, 2023
    Dataset authored and provided by
    Spotzi. Location Intelligence Dashboards for Businesses.
    License

    https://www.spotzi.com/en/about/terms-of-service/https://www.spotzi.com/en/about/terms-of-service/

    Area covered
    Belgium
    Description

    Our world is more connected than ever. Our smartphone has become the most important device for surfing the internet, checking the latest news and shopping online. But when we're not checking our phones we're also watching TV, listening to the radio and cutting out coupons from newspapers and flyers. Outside, we pass by billboards and see screens with advertisements in elevators and supermarkets on a daily basis. This real world seems far removed from the online world, and it can be a challenge to bridge the gap between online and offline consumer behavior. But with the right tools and the right data, this is easier than you think. Mobile Location data connects the online and offline world, allowing you to analyze the behaviour of Belgian smartphone users for better campaign targeting and more robust customer behaviour analytics.

  18. Global mobile data traffic per smartphone CAGR 2024-2030, by region

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global mobile data traffic per smartphone CAGR 2024-2030, by region [Dataset]. https://www.statista.com/statistics/1420545/global-mobile-data-traffic-per-smartphone-cagr-by-region/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    The compound annual growth rate (CAGR) of global mobile data traffic per smartphone from 2024 to 2030 is expected to reach ** percent in Sub-Saharan and ** percent in Latin America. North America follows, with mobile data traffic per smartphone CAGR forecast to amount to ** percent between 2024 and 2030.

  19. Phone and Webcam Video Dataset

    • kaggle.com
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unidata (2025). Phone and Webcam Video Dataset [Dataset]. https://www.kaggle.com/datasets/unidpro/phone-and-webcam-video
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 28, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Unidata
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Phone and Webcam videos

    Dataset comprises 1,300+ videos featuring over 300 individuals who each recorded 4 videos while pronouncing a set of numbers. This dataset is designed to facilitate research in biometric verification, face recognition, and action recognition. The videos include 2 recordings on mobile devices, each lasting approximately 30 seconds and 8 seconds, and 2 webcam recordings with the same durations.

    By utilizing this dataset, developers and researchers can enhance their understanding of human activity and improving object detection. - Get the data

    Examples of data

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2Fcb41444ba6f5bd4f48f2250f686fed22%2FFrame%20174%20(5).png?generation=1733179922956991&alt=media" alt=""> This extensive collection provides high-quality video recordings that are ideal for training and testing various vision models and learning algorithms. The dataset is a valuable resource for developing and evaluating detection algorithms and object tracking systems.

    💵 Buy the Dataset: This is a limited preview of the data. To access the full dataset, please contact us at https://unidata.pro to discuss your requirements and pricing options.

    Metadata for the dataset

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2Fe6eb3bdb6c82da56c879aa7d1afddb61%2FFrame%20136%20(2).png?generation=1733170796165756&alt=media" alt="">

    This dataset is an invaluable asset for researchers aiming to achieve higher detection accuracy and improve the performance of face recognition systems, ultimately contributing to advancements in biometric security and liveness detection technologies.

    🌐 UniData provides high-quality datasets, content moderation, data collection and annotation for your AI/ML projects

  20. N

    Mobile City, TX Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Mobile City, TX Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6eee82ce-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mobile City, Texas
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Mobile City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Mobile City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Mobile City was 154, a 2.67% increase year-by-year from 2021. Previously, in 2021, Mobile City population was 150, an increase of 5.63% compared to a population of 142 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Mobile City decreased by 42. In this period, the peak population was 233 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Mobile City is shown in this column.
    • Year on Year Change: This column displays the change in Mobile City population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Mobile City Population by Year. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Onur Gunes (2021). RICO dataset [Dataset]. https://www.kaggle.com/datasets/onurgunes1993/rico-dataset
Organization logo

RICO dataset

A Mobile App Dataset for Building Data-Driven Design Applications

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 2, 2021
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Onur Gunes
Description

Context

Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.

Content

Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.

Acknowledgements

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico

Inspiration

The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.

Search
Clear search
Close search
Google apps
Main menu