https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global field data collection software market is experiencing robust growth, driven by increasing demand for efficient data management and analysis across various industries. The market's expansion is fueled by several key factors: the rising adoption of mobile technologies and cloud-based solutions, the need for real-time data insights to improve operational efficiency, and the increasing pressure to comply with stringent regulatory standards in sectors like environmental monitoring and construction. The market is segmented by application (environmental, construction, oil and gas, transportation, mining, and others) and deployment type (cloud-based and on-premises). Cloud-based solutions are witnessing higher adoption rates due to their scalability, cost-effectiveness, and accessibility. While North America currently holds a significant market share due to early adoption and technological advancements, regions like Asia-Pacific are projected to experience substantial growth in the coming years, driven by rapid industrialization and infrastructure development. The competitive landscape includes established players like SafetyCulture and ArcGIS alongside emerging innovative companies continuously improving the software functionalities and user experience. Competition is intense, focused on providing superior data visualization, integration capabilities, and user-friendly interfaces. The market is anticipated to continue its upward trajectory, driven by ongoing technological innovation and the increasing reliance on data-driven decision-making across diverse industries. Despite the positive market outlook, certain challenges remain. The high initial investment required for implementing some solutions, particularly in the on-premises segment, and the need for specialized training to effectively utilize the software can act as restraints. Further, data security and privacy concerns remain a priority for organizations, particularly in regulated industries. Overcoming these challenges will require a focus on developing more user-friendly, affordable, and secure solutions with seamless integration capabilities, emphasizing the value proposition through clear ROI demonstrations and providing robust training and support services to users. The long-term forecast suggests continued market expansion, driven by a sustained focus on addressing these constraints and leveraging technological advancements to enhance data collection and management capabilities. The predicted CAGR will likely be influenced by economic conditions, technological innovation, and the evolving regulatory landscape.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Data Collector market size is anticipated to grow from USD 4.5 billion in 2023 to approximately USD 12.3 billion by 2032, at a compound annual growth rate (CAGR) of 11.6%. The growth of this market is largely driven by the increasing adoption of GIS technology across various industries, advances in technology, and the need for effective spatial data management.
An important factor contributing to the growth of the GIS Data Collector market is the rising demand for geospatial information across different sectors such as agriculture, construction, and transportation. The integration of advanced technologies like IoT and AI with GIS systems enables the collection and analysis of real-time data, which is crucial for effective decision-making. The increasing awareness about the benefits of GIS technology and the growing need for efficient land management are also fuelling market growth.
The government sector plays a significant role in the expansion of the GIS Data Collector market. Governments worldwide are investing heavily in GIS technology for urban planning, disaster management, and environmental monitoring. These investments are driven by the need for accurate and timely spatial data to address critical issues such as climate change, urbanization, and resource management. Moreover, regulatory policies mandating the use of GIS technology for infrastructure development and environmental conservation are further propelling market growth.
Another major growth factor in the GIS Data Collector market is the continuous technological advancements in GIS software and hardware. The development of user-friendly and cost-effective GIS solutions has made it easier for organizations to adopt and integrate GIS technology into their operations. Additionally, the proliferation of mobile GIS applications has enabled field data collection in remote areas, thus expanding the scope of GIS technology. The advent of cloud computing has further revolutionized the GIS market by offering scalable and flexible solutions for spatial data management.
Regionally, North America holds the largest share of the GIS Data Collector market, driven by the presence of key market players, advanced technological infrastructure, and high adoption rates of GIS technology across various industries. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, primarily due to rapid urbanization, government initiatives promoting GIS adoption, and increasing investments in smart city projects. Other regions such as Europe, Latin America, and the Middle East & Africa are also experiencing significant growth in the GIS Data Collector market, thanks to increasing awareness and adoption of GIS technology.
The role of a GPS Field Controller is becoming increasingly pivotal in the GIS Data Collector market. These devices are essential for ensuring that data collected in the field is accurate and reliable. By providing real-time positioning data, GPS Field Controllers enable precise mapping and spatial analysis, which are critical for applications such as urban planning, agriculture, and transportation. The integration of GPS technology with GIS systems allows for seamless data synchronization and enhances the efficiency of data collection processes. As the demand for real-time spatial data continues to grow, the importance of GPS Field Controllers in the GIS ecosystem is expected to rise, driving further innovations and advancements in this segment.
The GIS Data Collector market is segmented by component into hardware, software, and services. Each of these components plays a crucial role in the overall functionality and effectiveness of GIS systems. The hardware segment includes devices such as GPS units, laser rangefinders, and mobile GIS devices used for field data collection. The software segment encompasses various GIS applications and platforms used for data analysis, mapping, and visualization. The services segment includes consulting, training, maintenance, and support services provided by GIS vendors and solution providers.
In the hardware segment, the demand for advanced GPS units and mobile GIS devices is increasing, driven by the need for accurate and real-time spatial data collection. These devices are equipped with high-precision sensors and advanced features such as real-time kinematic (RTK) positioning, which enhance
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global market for GIS Collectors is experiencing robust growth, driven by increasing adoption of location-based services, the expanding need for precise geospatial data across various sectors, and the continuous advancements in mobile technology and data analytics capabilities. The market is segmented by hardware (handheld devices, tablets, drones) and software (field data collection apps, data management software). Key players like Hexagon, Trimble Geospatial, ESRI, Topcon, Handheld, and Wuhan South are actively innovating and expanding their product portfolios to cater to this growing demand. The market's expansion is further fueled by the rising need for efficient asset management, improved infrastructure planning, and precise mapping for various applications such as environmental monitoring, agriculture, and urban planning. Government initiatives promoting digitalization and smart city development are also contributing significantly to the market's growth trajectory. While high initial investment costs for hardware and software can act as a restraint, the long-term benefits in terms of operational efficiency and data accuracy are overcoming this challenge. We project a steady market growth over the forecast period, with a particular emphasis on the increasing penetration of cloud-based solutions and the integration of AI and machine learning for enhanced data processing and analysis. The period between 2019 and 2024 showed significant market expansion, setting a strong foundation for future growth. We estimate the market size in 2025 at $5 billion, based on observed trends and industry reports. This strong base, coupled with a projected Compound Annual Growth Rate (CAGR) of 12%, will drive considerable market expansion throughout the forecast period (2025-2033). The increasing demand across diverse sectors, from precision agriculture to utility management, will continue to be major drivers. Furthermore, the emergence of new technologies such as 5G and IoT will further enhance data collection and processing capabilities, leading to improved efficiencies and a further expansion of the market. The North American and European markets currently hold a significant share, but emerging economies in Asia-Pacific and Latin America are exhibiting accelerated growth potential, making them crucial regions for future expansion.
This is a video demonstrating how to connect Collector for ArcGIS to an external GNSS receiver.Steps:Connect your mobile device to the external GNSS receiver using bluetooth.Once the connection is successful, open an ArcGIS mobile app for field data collection (e.g., Collector for ArcGIS).Go to Settings, and look for Location setting.Press "Provider", click the add ("+") button, and choose the appropriate external GNSS receiver.You can specify the antenna height, if applicable, and then press "Done".The Collector for ArcGIS can now be used to collect field data by utilising the connected external GNSS receiver.Credits: Anatum GeoMobile Solutions
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global portable data collector market size was valued at approximately USD 2.5 billion in 2023 and is projected to reach USD 4.8 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.1% over the forecast period. The growth of this market is primarily driven by the increasing demand for real-time data capture and analysis across various industries. Advancements in technology, such as the integration of IoT and AI, are further propelling the market by enhancing the functionality and efficiency of portable data collectors.
One of the key growth factors for the portable data collector market is the rising need for automation in data collection and processing tasks. Industries such as retail, healthcare, and logistics are increasingly adopting portable data collectors to streamline operations, reduce human errors, and improve overall productivity. These devices enable quick and accurate data capture, which is crucial for inventory management, patient tracking, and supply chain optimization. Additionally, the growing trend of digital transformation across enterprises is encouraging the adoption of advanced data collection solutions.
Another significant factor contributing to the market's growth is the increasing penetration of mobile and wearable technology. The proliferation of smartphones and wearable devices equipped with advanced sensors and connectivity options has made it easier for businesses to deploy portable data collection solutions. These devices offer the flexibility to collect data from remote locations and in real-time, enhancing decision-making processes. Moreover, the integration of cloud computing with portable data collectors allows for seamless data storage and access, further boosting their adoption.
Furthermore, regulatory requirements and standards for data accuracy and security are driving the demand for portable data collectors. Industries such as healthcare and BFSI (Banking, Financial Services, and Insurance) are subject to stringent regulations that mandate precise data capture and secure handling of sensitive information. Portable data collectors equipped with advanced encryption and authentication features are becoming essential tools to comply with such regulations. This trend is expected to continue, further fueling market growth.
From a regional perspective, North America is anticipated to dominate the portable data collector market owing to its advanced technological infrastructure and high adoption rate of innovative solutions. The presence of major market players and the growing emphasis on automation and digitalization in sectors like retail and healthcare are key factors driving the market in this region. Meanwhile, the Asia Pacific region is expected to witness significant growth, attributed to the rapid industrialization and increasing investments in technology by emerging economies like China and India.
The portable data collector market can be segmented by product type into handheld data collectors, wearable data collectors, and mobile data collectors. Handheld data collectors are expected to hold a significant market share, driven by their versatility and ease of use. These devices are widely used in retail, logistics, and healthcare for various applications such as inventory management, asset tracking, and patient care. The robust design and advanced features like barcode scanning and RFID capabilities make handheld data collectors a preferred choice for many industries.
Wearable data collectors are gaining traction due to the increasing adoption of wearable technology in sectors like healthcare and manufacturing. These devices offer hands-free operation, which is particularly beneficial in environments where manual data entry is impractical or hazardous. Wearable data collectors equipped with advanced sensors can monitor and collect data on various parameters such as heart rate, temperature, and movement, making them invaluable in medical and industrial applications. The integration of IoT in wearable data collectors is expected to further enhance their functionality and adoption.
Mobile data collectors, which include smartphones and tablets equipped with data collection apps, are also witnessing substantial growth. The widespread availability of mobile devices and the development of specialized data collection software have made mobile data collectors a cost-effective and flexible solution for businesses. These devices are particularly popular in field data collection activities, where portability a
This is a video demonstrating how to connect Survey123 for ArcGIS to an external GNSS receiver.Steps:Connect your mobile device to the external GNSS receiver using bluetooth.Once the connection is successful, open an ArcGIS mobile app for field data collection (e.g., Survey123 for ArcGIS).Go to Settings, and look for Location setting.Click "Add Provider" and choose "External receiver".Once your external GNSS receiver is detected, press it and wait until the app establishes the connection.Author: Esri Indonesia Solution Strategist TeamCopyright © 2020 Esri Indonesia. All rights reserved.
Use the Attachment Viewer template to provide an app for users to explore a layer's features and review attachments with the option to update attribute data. Present your images, videos, and PDF files collected using ArcGIS Field Maps or ArcGIS Survey123 workflows. Choose an attachment-focused layout to display individual images beside your map or a map-focused layout to highlight your map next to a gallery of images. Examples: Review photos collected during emergency response damage inspections. Display the results of field data collection and support downloading images for inclusion in a report. Present a map of land parcel along with associated documents stored as attachments. Data requirements The Attachment Viewer template requires a feature layer with attachments. It includes the capability to view attachments of a hosted feature service or an ArcGIS Server feature service (10.8 or later). Currently, the app can display JPEG, JPG, PNG, GIF, MP4, QuickTime (.mov), and PDF files in the viewer window. All other attachment types are displayed as a link. Key app capabilities App layout - Choose between an attachment-focused layout, which displays one attachment at a time in the main panel of the app with the map on the side, or a map-focused layout, which displays the map in the main panel of the app with a gallery of attachments. Feature selection - Allows users to select features in the map and view associated attachments. Review data - Enable tools to review and update existing records. Zoom, pan, download images - Allow users to interact with and download attachments. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.
Reporter for MRGPThe Reporter for MRGP doesn't require you to download any apps to complete an inventory; all you need is an internet connection and web browser. The Reporter includes culverts and bridges from VTCULVERTS, town highways from Vtrans and the current status of the MRGP segments and outlets on the map.MRGP Fieldworker SolutionNotes on MRGP fieldworker solution: July 12, 2021. The MRGP map now displays the current status of road segments and outlets. Fieldworkers using the MRGP solution should remove the offline map area(s) from their device, and keep their new offline map current, by syncing their map. Enabling auto-sync will get you the current segment or outlet status automatically. See FAQ section below for more information. Road Erosion Inventory forms are available and have a new look and feel this year. The drainage ditch survey is broken out into three pages for a better user experience. The first page contains survey and segment information, the second; the inventory, and the third; barriers to implementation. You will notice the questions are outlined by section so it’s easier to follow along too. The questions have remained the same. Survey123 has a new option requiring users to update surveys on their mobile device. That option has been enabled for the two MRGP Survey123 forms. Step 1: Download the free mobile appsFor fieldworkers to collect and submit data to VT DEC, two free apps are required: ArcGIS Collector or Field Maps and Survey123. ArcGIS Collector or Field Maps is used first to locate the segment or outlet for inventory, and Survey123, for completing the Road Erosion Inventory. ArcGIS Field Maps is ESRI’s new all-in-one app for field work and will replace ArcGIS Collector. You can download ArcGIS Collector or ArcGIS Fields Maps and Survey123 from the Google Play Store.You can download ArcGIS Collector or ArcGIS Field Maps and Survey123 from Apple Store.
Step 2: Sign into the mobile appYou will need appropriate credentials to access fieldworker solution, please contact your Regional Planning Commission’s Transportation Planner or Jim Ryan (MRGP Program Lead) at (802) 490-6140.Open Collector for ArcGIS, select ‘ArcGIS Online’ as shown below, and enter the user name and password. The credential is saved unless you sign out. Step 3: Open the MRGP Mobile MapIf you’re working in an area that has a reliable data connection (e.g. LTE or 4G), open the map below by selecting it.Step 4: Select a road segment or outlet for inventoryUse your location, button circled in red below, select the segment or outlet you need to inventory, and select 'Update Road Segment Status' from the pop-up to launch Survey123.
Step 5: Complete the Road Erosion Inventory and submit inventory to DECSelecting 'Update Road Segment Status' opens Survey123, downloads the relevant survey and pre-populates the REI with important information for reporting to DEC. You will have to enter the same username and password to access the REI forms. The credential is saved unless you sign out of Survey123.Complete the survey using the appropriate supplement below and submit the assessment directly to VT DEC.Paved Roads with Catch Basin SupplementPaved and Gravel Roads with Drainage Ditches Supplement
Step 6: Repeat!Go back to the ArcGIS Collector or Field Maps and select the next segment for inventory and repeat steps 1-5.
If you have question related to inventory protocol reach out to Jim Ryan, MRGP Program Lead, at jim.ryan@vermont.gov, (802) 490-6140If you have questions about implementing the mobile data collection piece please contact Ryan Knox, ADS-ANR IT, at ryan.knox@vermont.gov, (802) 793-0297
The location where I'm doing inventory does not have a data coverage (LTE or 4G). What can I do?ArcGIS Collector allows you take map areas offline when you think there will be spotty or no data coverage. I made a video to demonstrate the steps for taking map areas offline - https://youtu.be/OEsJrCVT8BISurvey123 operates offline by default but you need to download the survey. My recommendation is to test the fieldworker solution (Steps 1-5) before you go into the field but don't submit the test survey.Where can I download the Road Erosion Scoring shown on the the Atlas? You can download the scoring for both outlets and road segments through the VT Open Geodata Portal.https://geodata.vermont.gov/maps/VTANR::mrgp-scoring-open-data/aboutHow do I use my own ArcGIS Collector map for launching the official MRGP REI survey form? You can use the following custom url for launching Survey123, open the REI and prepopulate answers in the form. More information is here. TIP: add what's below directly in the HTML view of the popup not the link as described in the post I provided.
Hydrologically connected
segments (lines):Update Road Segment Status
Segment ID: {SegmentID}
Segment Status: {SegmentStatus}
{RoadName}, {Municipality}
Outlets: {Outlets}
Hydrologically
connected outlets (points):Update Outlet Status
Outlet ID: {OutletID}
Municipality: {Municipality}
Erosion: {ErosionValue}
How do I save my name and organization information used in subsequent surveys? Watch this short video or execute the steps below:
Open Survey123 and open a blank REI form (Collect button) Note: it's important to open a blank form so you don't save the same segment id for all your surveys Fill-in your 'Name' and 'Organization' and clear the 'Date of Assessment field' (x button). Using the favorites menu in the top-right corner you can use the current state of your survey to 'Set as favorite answers.' Close survey and 'Save this survey in Drafts.' Use Collector to launch survey from selected feature (segment or outlet). Using the favorites menu again, 'Paste answers from favorite.
What if the map doesn't have the outlet or road segment I need to inventory for the MRGP? Go Directly to Survey123 and complete the appropriate Road Erosion Inventory and submit the data to DEC. The survey includes a Geopoint (location) that we can use to determine where you completed the inventory.
Where can I view the Road Erosion Inventories completed with Survey123? Using the MRGP credentials you have access to another map that shows completed REIs.Web map - Completed Road Erosion Inventories for MRGPWhere can I download the 2020-2021 data collected with Survey123?Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f8a11de8a5a0469596ef11429ab49465Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=ae13a925a662490184d5c5b1b9621672Where can I download the 2019 data collected with Survey123?
Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=f60050c6f3c04c60b053470483acb5b1 Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=753006f9ecf144ccac8ce37772bb2c03 Where can I download the 2018 data collected with Survey123?Outlets (points) - https://vtanr.maps.arcgis.com/home/item.html?id=124b617d142e4a1dbcfb78a00e8b9bc5Road Segments (lines) - https://vtanr.maps.arcgis.com/home/item.html?id=8abcc0fcec0441ce8ae6cd38e3812b1b Where can I download the Hydrologically Connected Road Segments and Outlets?Vermont Open Data Geoportal - https://geodata.vermont.gov/datasets/VTANR::hydrologically-connected-road-segments-1/about
This 2019 version of the MRGP Outlets is based on professional mapping completed using DEC's Stormwater Infrastructure dataset. In catch basin systems, work was completed to match outlets to road segments that drain to them. The outlets here correspond to Outlet IDs identified in the Hydrologically connected roads segments layer. For outlets that meet standard, road segments will also meet the standard for MRGP compliance.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
Market Overview The global Field Data Collection Software market has witnessed tremendous growth in recent years, driven by the increasing demand for real-time data collection and analysis. The market size was estimated to be XXX million in 2025 and is projected to grow at a CAGR of XX% from 2025 to 2033. Key growth drivers include the rising adoption of mobile devices and cloud-based platforms, the need for improved safety and compliance, and the increasing complexity of field operations. Segmentation and Regional Analysis The market is segmented by deployment type (cloud-based and on-premises) and application (environmental, construction, oil and gas, transportation, mining, and others). The environmental segment held the largest market share in 2025, driven by the growing need for environmental monitoring and compliance. Geographically, North America and Europe are the dominant markets, followed by Asia Pacific and the Middle East & Africa. The market in Asia Pacific is expected to witness significant growth in the coming years due to the rapidly expanding construction and mining industries.
This dashboard is best viewed using a mobile device. For an enhanced viewing experience on a desktop or laptop computer please use the NV Wildfire Info desktop version dashboardAll data displayed on this map is near real-time. There are two ways in which this happens: Web service based data and a mobile mapping application called Field Maps. Web services are updated regularly ranging from every minute to once a month. All web services in this map are refreshed automatically to ensure the latest data being provided is displayed. Data collected through the use of Field Maps is done so by firefighters on the ground. The Field Maps application is consuming, creating, and editing data that are stored in ArcGIS Online. These data are then fed directly in to this map. To learn more about these web mapping technologies, visit the links below:Web ServicesArcGIS Field MapsArcGIS OnlineWeb Services used in this map:(visit link to learn more about each service)IRWIN - A central hub that orchestrates data between various fire reporting applications. When a new incident is created and/or updated by a dispatch center or other fire reporting system, it is then displayed on the map using the Integrated Reporting of Wildland-Fire Information (IRWIN) service. All layers below are derived from the same IRWIN service and automatically refresh every five minutes:New Starts (last 24hrs) - Any incident that has occurred within the last rolling 24 hour time period.Current Large Incidents - Incidents that have created an ICS 209 document at the type 3 Incident Commander (IC) level and above and are less than 100% contained.Ongoing - Incidents that do not have a containment, control, or out date.Contained - Incidents with a containment date but no control or out date.Controlled/Out (last 24hrs) - Incidents with a containment, control, and/or out date within the last rolling 24 hour time period.Controlled/Out - Incidents with a containment, control, and/or out date. Layer turned off by default.Season Summary - All incidents year to date. Layer turned off by default.ArcGIS Online/Field Maps - Part of the Esri Geospatial Cloud, ArcGIS Online and Collector enables firefighters to use web maps created in ArcGIS Online on mobile devices using the Collector application to capture and edit data on the fireline. Data may be captured and edited in both connected and disconnected environments. When data is submitted back to the web service in ArcGIS Online, it is then checked for accuracy and approved for public viewing.Fire Perimeter - Must be set to 'Approved' and 'Public' to be displayed on the map. Automatically refreshes every five minutes.NOAA nowCOAST - Provides web services of near real-time observations, analyses, tide predictions, model guidance, watches/warnings, and forecasts for the coastal United States by integrating data and information across NOAA, other federal agencies and regional ocean and weather observing systems (source). All layers below automatically refresh every five minutes.Tornado Warning - National Weather Service warning for short duration hazard.Severe Thunderstorm Warning - National Weather Service warning for short duration hazard.Flash Flood Warning - National Weather Service warning for short duration hazard.Red Flag Warning - National Weather Service warning for long duration hazard.nowCOAST Lightning Strike Density - 15-minute Satellite Emulated Lightning Strike Density imagery for the last several hours.nowCOAST Radar - Weather Radar (NEXRAD) Reflectivity Mosaics from NOAA MRMS for Alaska, CONUS, Puerto Rico, Guam, and Hawaii for last several hours.
MRGP NewsIf you already have an ArcGIS named user, join the MRGP Group. Doing so allows you complete the permit requirements under your organization's umbrella. As a group member you get access to the all the MRGP items without having to log-in and log-out. If you don’t have an ArcGIS member account please contact Chad McGann (MRGP Program Lead) at 802-636-7239 or your Regional Planning Commission’s Transportation Planner. April 9, 2025. Conditional logic in webform for the newly published Open Drainage Survey was not calculating properly leading to some records with "Undetermined" status and priority. Records have been rescored and survey was republished with corrective logic. Field App version not impacted.March 11, 2025. The Road Erosion Inventory Survey123 questions for Open Drainage Roads are being streamlined to make assessments faster. Coming April 1st, the survey will be changed to only ask if there is erosion depending on if the corresponding practice type is failing. This aims at using erosion as an indicator to measure the success of each of the four Open Drainage road elements to handle stormwater: crown, berm, drainage, turnout.March 29, 2023. For MRGP permitting, Lyndonville Village (GEOID 5041950) has merged with Lyndonville Town (GEOID 5000541725). 121 segments and 14 outlets have been updated to reflect the administrative change. December 8, 2023. The Open Drainage Road Inventory survey has been updated for the 2024 field season. We added and modified a few notes for clarification and corrected an issue with users submitting incomplete surveys. See FAQ section below for how to delete the old survey and download the new one. The app will notify you there's an update, and execute it, but we've experienced select-one questions with duplicate entries.November 29, 2023. The Closed Drainage Road Inventory survey has been updated for the 2024 field season. There's a new outlet status option called "Not accessible" and conditional follow-up question. This has been added to support MS4 requirements. See FAQ section below for how to delete the old survey and download the new one. The app will notify you there's an update and execute it for you but we've experienced select-one questions with duplicate entries. Reporter for MRGPThe Reporter for MRGP doesn't require you to download any apps to complete an inventory; all you need is an internet connection and web browser. The Reporter includes culverts and bridges from VTCULVERTS, town highways from Vtrans, current status for MRGP segments and outlets and second cycle progress. The Reporter is a great way to submit work completed to meet the MRGP standards. MRGP Fieldworker SolutionStep 1: Download the free mobile appsFor fieldworkers to collect and submit data to VT DEC, two free apps are required: ArcGIS Field Maps and Survey123. ArcGIS Field Maps is used first to locate the segment or outlet for inventory, and Survey123, for completing the Road Erosion Inventory.• You can download ArcGIS Fields Maps and Survey123 from the Google Play Store.• You can download ArcGIS Field Maps and Survey123 from Apple Store.Step 2: Sign into the mobile appYou will need appropriate credentials to access fieldworker solution, Please contact your Regional Planning Commission’s Transportation Planner or Chad McGann (MRGP Program Lead) at 802-636-7239.Open Field Maps, select ‘ArcGIS Online’ as shown below, and enter the user name and password. The credential is saved unless you sign out. Step 3: Open the MRGP Mobile MapIf you’re working in an area that has a reliable data connection (e.g. LTE or 4G), open the map below by selecting it.Step 4: Select a road segment or outlet for inventoryUsing your location, highlighted in red below, select the segment or outlet you need to inventory, and select 'Update Road Segment Status' from the pop-up to launch Survey123.
Step 5: Complete the Road Erosion Inventory and submit inventory to DECSelecting 'Update Road Segment Status' opens Survey123, downloads the relevant survey and pre-populates the REI with important information for reporting to DEC. You will have to enter the same username and password to access the REI forms. The credential is saved unless you sign out of Survey123.Complete the survey using the appropriate supplement below and submit the assessment directly to VT DEC.Paved Roads with Catch Basin SupplementPaved and Gravel Roads with Drainage Ditches Supplement
Step 6: Repeat!Go back to the ArcGIS Field Maps and select the next segment for inventory and repeat steps 1-5.
If you have question related to inventory protocol reach out to Chad McGann, MRGP Program Lead, at chad.mcgann@vermont.gov, 802-636-7396.If you have questions about implementing the mobile data collection piece please contact Ryan Knox, ADS-ANR IT, at ryan.knox@vermont.gov, (802) 793-0297
How do I update a survey when a new one is available?While the Survey123 app will notify you and update it for you, we've experienced some select-one questions having duplicate choices. It's a best practice to delete the old survey and download the new one. See this document for step-by-step instructions.I already have an ArcGIS member account with my organization, can I use it to complete MRGP inventories?Yes! The MRGP solution is shared within an ArcGIS Group that allows outside organizations. Click "join this group" and send an request to the ANR GIS team. This will allow you complete MRGP requirements for the REI and stay logged into your organization. Win-win situation for us both!AGOL Group: https://www.arcgis.com/home/group.html?id=027e1696b97a48c4bc50cbb931de992d#overviewThe location where I'm doing inventory does not have data coverage (LTE or 4G). What can I do?ArcGIS Field Maps allows you take map areas offline when you think there will be spotty or no data coverage. I made a video to demonstrate the steps for taking map areas offline - https://youtu.be/ScpQnenDp7wSurvey123 operates offline by default but you need to download the survey. My recommendation is to test the fieldworker solution (Steps 1-5) before you go into the field but don't submit the test survey.How do remove an offline area and create a new one? Check out this how-to document for instructions. Delete and Download Offline AreaWhere can I download the Road Erosion Scoring shown on the the Atlas? You can download the scoring for both outlets and road segments through the VT Open Geodata Portal.https://geodata.vermont.gov/search?q=mrgpHow do I use my own map for launching the official MRGP REI survey form? You can use the following custom url for launching Survey123, open the REI and prepopulate answers in the form. More information is here. TIP: add what's below directly in the HTML view of the popup not the link as described in the post I provided.
Segments (lines):Update Road Segment StatusOutlets (points):Update Outlet Status
How do I save my name and organization information used in subsequent surveys? Watch this short video or execute the steps below:
Open Survey123 and open a blank REI form (Collect button) Note: it's important to open a blank form so you don't save the same segment id for all your surveys Fill-in your 'Name' and 'Organization' and clear the 'Date of Assessment field' (x button). Using the favorites menu in the top-right corner you can use the current state of your survey to 'Set as favorite answers.' Close survey and 'Save this survey in Drafts.' Use Collector to launch survey from selected feature (segment or outlet). Using the favorites menu again, 'Paste answers from favorite.
What if the map doesn't have the outlet or road segment I need to inventory for the MRGP? Go Directly to Survey123 and complete the appropriate Road Erosion Inventory and submit the data to DEC. The survey includes a Geopoint (location) that we can use to determine where you completed the inventory.
Where can I view the Road Erosion Inventories completed with Survey123? Use the web map below to view second cycle inventories completed with Survey123. The first cycle inventories can be downloaded below. First cycle inventories are those collected 2018-2022.Web map - Completed Road Erosion Inventories for MRGPWhere can I download the 2020-2022 data collected with Survey123?Road Segments (lines) - https://anrmaps.vermont.gov/websites/MRGP/MRGP2020_segments.zipOutlets (points) - https://anrmaps.vermont.gov/websites/MRGP/MRGP2020_outlets.zipWhere can I download the 2019 data collected with Survey123?
Road Segments (lines) -
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS collectors market size was valued at USD 1.5 billion in 2023 and is projected to reach USD 3.2 billion by 2032, growing at a CAGR of 8.5% during the forecast period. This growth can be attributed to the rising demand for accurate geographic data collection and analysis across various industries. The drive towards digital transformation and the increasing adoption of advanced technologies in sectors like construction, utilities, and environmental monitoring are significant growth factors for this market.
One of the primary growth factors for the GIS collectors market is the increasing need for precise and reliable geographic data in urban planning and development. As cities expand and infrastructures develop, there is a growing demand for geospatial data to plan and manage urban regions effectively. GIS collectors provide accurate data collection, which facilitates better decision-making processes in urban planning. Moreover, the integration of GIS technology with other advanced technologies like IoT and AI is further enhancing its applicability and adoption in urban development projects.
The agriculture sector is also significantly driving the growth of the GIS collectors market. Precision farming techniques rely heavily on accurate geospatial data to monitor and manage agricultural fields effectively. GIS collectors enable farmers to collect and analyze data on soil health, crop conditions, and water availability, which helps in optimizing resources and improving crop yields. The increasing emphasis on sustainable farming practices and the need to meet the food demands of a growing global population are further boosting the adoption of GIS collectors in agriculture.
Additionally, environmental monitoring is emerging as a crucial application area, contributing to the market's expansion. With growing environmental concerns and the need for sustainable resource management, there is an increasing demand for technologies that can monitor and analyze environmental conditions efficiently. GIS collectors provide valuable data for tracking changes in land use, vegetation cover, and water resources, which is essential for conservation efforts and policy-making. The adoption of GIS collectors in environmental monitoring is expected to rise as governments and organizations focus more on environmental sustainability.
Regionally, North America is expected to dominate the GIS collectors market during the forecast period, owing to the early adoption of advanced technologies and significant investments in geospatial data infrastructure. The presence of major market players and extensive applications in urban planning, environmental monitoring, and agriculture are driving the market in this region. Furthermore, the Asia Pacific region is anticipated to exhibit the highest growth rate due to rapid urbanization, increasing government initiatives for smart cities, and rising demand for precision agriculture practices.
The GIS collectors market is segmented by product type into handheld GIS collectors, mobile GIS collectors, and desktop GIS collectors. Handheld GIS collectors are portable devices that allow users to collect geospatial data on-site with ease. These devices are typically used in field surveys, environmental monitoring, and utility management. The demand for handheld GIS collectors is driven by their convenience, ease of use, and ability to provide real-time data collection in remote and challenging environments. As industries continue to prioritize field data accuracy and efficiency, the adoption of handheld GIS collectors is expected to grow significantly.
Mobile GIS collectors, often integrated with smartphones and tablets, offer enhanced flexibility and connectivity for geospatial data collection. These devices leverage mobile networks and cloud-based platforms to facilitate seamless data transfer and real-time analysis. The growing adoption of mobile GIS collectors can be attributed to the increasing reliance on mobile technology and the need for real-time data access and sharing. Industries such as transportation, utilities, and urban planning are increasingly deploying mobile GIS collectors to improve operational efficiency and decision-making processes.
Desktop GIS collectors, on the other hand, are primarily used for high-precision geospatial data collection and analysis in office environments. These devices are equipped with advanced software and processing capabilities, making them ideal for complex data analysis and large-scale projects. The deman
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 2.91(USD Billion) |
MARKET SIZE 2024 | 3.2(USD Billion) |
MARKET SIZE 2032 | 6.8(USD Billion) |
SEGMENTS COVERED | Product type ,Form Factor ,Industry ,Data capture technology ,Operating System ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | 1 Growing demand for realtime data 2 Technological advancements 3 Increasing use of cloudbased solutions 4 Rise of the Internet of Things IoT 5 Growing adoption in various industries |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | Zebra Technologies Corporation ,Datalogic S.p.A ,Honeywell International Inc. ,DENSO Corporation ,Motorola Solutions, Inc. ,Cognex Corporation ,Intermec Technologies Corporation ,TSC Auto ID Technology Co. Ltd. ,Aratek Information Technology Co., Ltd. ,Shenzhen Goodix Technology Co., Ltd. ,Suprema Inc. ,Anviz Global ,IDEMIA ,ZKTeco Co., Ltd. ,Fujitsu Frontech Limited |
MARKET FORECAST PERIOD | 2024 - 2032 |
KEY MARKET OPPORTUNITIES | Rugged designs Wireless connectivity Enhanced data capture Improved security Cloudbased solutions |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 9.87% (2024 - 2032) |
DISCOVERAQ_Colorado_Ground_Mobile_Data contains data collected via the Princeton Mobile Lab and NASA Langley LARGE Mobile Lab during the Colorado (Denver) deployment of NASA's DISCOVER-AQ field study. This data product contains data for only the Colorado deployment and data collection is complete.Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.DISCOVER-AQ employed two NASA aircraft, the P3-B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
All data displayed on this map is near real-time. There are two ways in which this happens: Web service based data and a mobile mapping application called Field Maps. Web services are updated regularly ranging from every minute to once a month. All web services in this map are refreshed automatically to ensure the latest data being provided is displayed. Data collected through the use of Field Maps is done so by firefighters on the ground. The Field Maps application is consuming, creating, and editing data that are stored in ArcGIS Online. These data are then fed directly in to this map. To learn more about these web mapping technologies, visit the links below:Web ServicesArcGIS Field MapsArcGIS OnlineWeb Services used in this map:(visit link to learn more about each service)IRWIN - A central hub that orchestrates data between various fire reporting applications. When a new incident is created and/or updated by a dispatch center or other fire reporting system, it is then displayed on the map using the Integrated Reporting of Wildland-Fire Information (IRWIN) service. Automatically refreshes every five minutes:Fires by Cause - Any incident that has occurred year to date displayed by cause.ArcGIS Online/Field Maps - Part of the Esri Geospatial Cloud, ArcGIS Online and Collector enables firefighters to use web maps created in ArcGIS Online on mobile devices using the Collector application to capture and edit data on the fireline. Data may be captured and edited in both connected and disconnected environments. When data is submitted back to the web service in ArcGIS Online, it is then checked for accuracy and approved for public viewing.Fire Perimeter - Must be set to 'Approved' and 'Public' to be displayed on the map. Automatically refreshes every five minutes.
This data set contains electric field mill data collected coincident with either the University of Alabama-Huntsville MIPS profiling system or the National Center for Atmospheric Research MISS profiling system during the PLOWS field seasons. Data are available from the MISS site for IOP7, 8, 14 and 19 and from the MIPS site for IOP7, 8, 9, 10, 14, 17, 18, 19 and 21. The data were provided by the University of Alabama-Huntsville. Data from both sites are in a single column ASCII data format.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global field service mobile apps market size was valued at approximately USD 3 billion in 2023 and is anticipated to reach around USD 7.2 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 10.2% during the forecast period. This impressive growth trajectory is fueled primarily by the increasing demand for enhanced operational efficiency and customer satisfaction in field services industries. The adoption of advanced mobile solutions in field services is reshaping traditional business operations, making them more agile, responsive, and customer-centric. As industries such as manufacturing, construction, and utilities increasingly lean on digital transformation strategies, the need for robust mobile applications that streamline field operations is more critical than ever.
One of the primary growth factors driving the field service mobile apps market is the increasing demand for real-time communication and data sharing between field workers and back-office operations. With the proliferation of mobile devices and the integration of IoT technology, field service personnel can now access and share critical information instantaneously, reducing downtime and improving service delivery. Moreover, the emphasis on customer satisfaction and the need for immediate issue resolution have pushed companies to adopt mobile solutions that empower field agents with the tools necessary to deliver superior service. This shift not only enhances the efficiency of field operations but also bolsters the overall customer experience.
Another significant driver is the growing trend towards automation and data-driven decision-making in field services. Field service mobile apps enable businesses to automate scheduling, dispatching, and work order management processes, thus minimizing manual errors and optimizing resource allocation. Additionally, these apps facilitate the collection and analysis of large volumes of field data, providing businesses with valuable insights to improve operational strategies and predict future trends. As industries continue to recognize the benefits of digital solutions, the integration of AI and machine learning into mobile apps is expected to further boost market growth, offering predictive maintenance and advanced analytics capabilities.
The rising demand for cost-effective and scalable solutions among small and medium enterprises (SMEs) is also contributing significantly to the marketÂ’s expansion. SMEs, which often face budget constraints and resource limitations, find mobile apps an attractive option due to their affordability and ability to scale with business growth. These apps offer SMEs the flexibility to manage field operations efficiently, reduce operational costs, and improve service quality, thereby leveling the playing field with larger competitors. As more SMEs embrace digital transformation, the field service mobile apps market is set to witness substantial growth in the coming years.
Field Service Management (FSM) Software plays a crucial role in enhancing the capabilities of field service mobile apps. By integrating FSM software, businesses can achieve seamless coordination between field operations and back-office processes. This integration allows for real-time tracking of field activities, efficient scheduling, and resource allocation, which are essential for maintaining high levels of service quality. FSM software also supports the automation of routine tasks, reducing the administrative burden on field personnel and enabling them to focus on delivering exceptional customer service. As the demand for comprehensive field service solutions grows, the incorporation of FSM software into mobile apps is becoming increasingly vital for businesses looking to optimize their field operations and achieve a competitive edge.
Regionally, North America holds the largest market share in the field service mobile apps market, driven by the early adoption of advanced technologies and a strong focus on enhancing customer satisfaction. The presence of major players and a well-established IT infrastructure further bolster the market in this region. Meanwhile, the Asia Pacific region is expected to exhibit the highest growth rate during the forecast period, owing to rapid industrialization, increasing smartphone penetration, and a growing focus on digital transformation across various sectors. As these regions continue to invest in digital solutions, the demand for field service mobile apps is poised to rise, offering lucrative opportunities for
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data collection environmentThis study analyzed the log data which were collected during an on-site experiential learning program which studied sustainable development at Yangdong Village. Yangdong Village is registered as a world heritage site because its Korean traditional-style houses, known as Hanok, have been well preserved from the Chosun era until the present day. However, there have been some changes in many buildings in that the existing houses were converted from residential to commercial use and buildings were converted from the traditional style to a modern-style residence. The student research activities at Yangdong village included 3 types of activities: 1) forming teams of students and making basic observations on whether or not an individual house has been changed, 2) performing a research investigation which requires a judgment on either the house is allowed to be changed or must be preserved, and 3) conducting interviews with residents if necessary. The investigation on the house could be done quickly, but the research investigation, which requires the students’ judgment, and the resident interviews were activities which require time. Students' results from inquiry activityThe students used the Collector for ArcGIS application on mobile devices to perform the research activities, and the results created by the research activities were saved in the cloud-based ArcOnline in real time. The Collector for ArcGIS application does not internally track and store the students’ movement logs. Therefore, this study used a multi-camcorder equipped with a GPS device to collect movement logs. Log.csv(TeamLog.shp, TotalLog.shp) shows the environment for collecting the on-site experiential learning movement logs, as well as the equipment and tools used to collect the log data. The GPS-equipped multi-camcorder stores image data which contain the movement logs and show the process of the students performing the on-site experiential learning. The movement logs contain the time, latitude, longitude, altitude, speed, and slope at which the actual on-site experiential activities were performed, as well as errors (eos). This information is saved in the .nmea file format. And I transforemed the logdata format .nmea to .csv / .shp for analysis. I upload the data such as:1) Movement Log: Total_log_wgs.shp(include: Log.csv, TeamLog.shp, TotalLog.shp)2) Students' answer: polygon_answer.shp, point_answer.shp3) Boundaries: Yangdong_area.shp
This dataset contains University of Alabama - Huntsville Mobile Integrated Profiling System (UAH MIPS) Electric Field Mill Data collected on 27-28 January 2014 as part of the Ontario Winter Lake-effect Systems (OWLeS) project. These data are collected at 0.1 second intervals and only collected when there is a change in the base state of the electric field.
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 7.31(USD Billion) |
MARKET SIZE 2024 | 7.95(USD Billion) |
MARKET SIZE 2032 | 15.7(USD Billion) |
SEGMENTS COVERED | Application, Deployment Mode, End User, Functionality, Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | rising demand for mobile solutions, increasing adoption of IoT technologies, growing need for operational efficiency, emphasis on customer satisfaction, advanced analytics integration |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | Zebra Technologies, AccuLynx, Sage, Salesforce, Microsoft, IBM, Oracle, ServiceTitan, SimPRO, Jobber, Fracttal, FieldAware, ClickSoftware, SAP, mHelpDesk |
MARKET FORECAST PERIOD | 2025 - 2032 |
KEY MARKET OPPORTUNITIES | Increased adoption of IoT solutions, Demand for enhanced customer experience, Growth in remote workforce management, Integration with AI technologies, Rising need for real-time data analytics |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 8.87% (2025 - 2032) |
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global field data collection software market is experiencing robust growth, driven by increasing demand for efficient data management and analysis across various industries. The market's expansion is fueled by several key factors: the rising adoption of mobile technologies and cloud-based solutions, the need for real-time data insights to improve operational efficiency, and the increasing pressure to comply with stringent regulatory standards in sectors like environmental monitoring and construction. The market is segmented by application (environmental, construction, oil and gas, transportation, mining, and others) and deployment type (cloud-based and on-premises). Cloud-based solutions are witnessing higher adoption rates due to their scalability, cost-effectiveness, and accessibility. While North America currently holds a significant market share due to early adoption and technological advancements, regions like Asia-Pacific are projected to experience substantial growth in the coming years, driven by rapid industrialization and infrastructure development. The competitive landscape includes established players like SafetyCulture and ArcGIS alongside emerging innovative companies continuously improving the software functionalities and user experience. Competition is intense, focused on providing superior data visualization, integration capabilities, and user-friendly interfaces. The market is anticipated to continue its upward trajectory, driven by ongoing technological innovation and the increasing reliance on data-driven decision-making across diverse industries. Despite the positive market outlook, certain challenges remain. The high initial investment required for implementing some solutions, particularly in the on-premises segment, and the need for specialized training to effectively utilize the software can act as restraints. Further, data security and privacy concerns remain a priority for organizations, particularly in regulated industries. Overcoming these challenges will require a focus on developing more user-friendly, affordable, and secure solutions with seamless integration capabilities, emphasizing the value proposition through clear ROI demonstrations and providing robust training and support services to users. The long-term forecast suggests continued market expansion, driven by a sustained focus on addressing these constraints and leveraging technological advancements to enhance data collection and management capabilities. The predicted CAGR will likely be influenced by economic conditions, technological innovation, and the evolving regulatory landscape.