Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Streaming is by far the predominant type of traffic in communication networks. With thispublic dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3G/4G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
a packet sniffer software
Leverage the most reliable and compliant mobile device location/foot traffic dataset on the market. Veraset Movement (Mobile Device GPS / Foot Traffic Data) offers unparalleled insights into footfall traffic patterns across North America.
Covering the United States, Canada and Mexico, Veraset's Mobile Location Data draws on raw GPS data from tier-1 apps, SDKs, and aggregators of mobile devices to provide customers with accurate, up-to-the-minute information on human movement. Ideal for ad tech, planning, retail analysis, and transportation logistics, Veraset's Movement data helps in shaping strategy and making data-driven decisions.
Veraset’s North American Movement Panel: - United States: 768M Devices, 70B+ Pings - Canada: 55M+ Devices, 9B+ Pings - Mexico: 125M+ Devices, 14B+ Pings - MAU/Devices and Monthly Pings
Uses for Veraset's Mobile Location Data: - Advertising - Ad Placement, Attribution, and Segmentation - Audience Creation/Building - Dynamic Ad Targeting - Infrastructure Plans - Route Optimization - Public Transit Optimization - Credit Card Loyalty - Competitive Analysis - Risk assessment, Underwriting, and Policy Personalization - Enrichment of Existing Datasets - Trade Area Analysis - Predictive Analytics and Trend Forecasting
The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository is part of the ITC-NetMingledApp dataset, which includes network traffic data from 36 Android applications, with each capture featuring concurrent traffic from multiple applications and smartphones. This repository contains part #2 of the data related to the Iran-Tehran scenario. Each capture is stored in a compressed file containing the relevant PCAP files of the associated applications. The PCAP files are named according to a convention: {TimeStamp}_{Application Name}{Download-Upload Speed}.pcap Part #1 of Iran-Tehran scenario is in the Tehran Dataset #1 (https://doi.org/10.17632/9frgkybxhn.1) repository.
Leverage the most reliable and compliant mobile device location/foot traffic dataset on the market!
Veraset Movement (GPS Mobility Data) offers unparalleled insights into foot traffic patterns for dozens of countries across the Middle East.
Covering 14+ countries for the Middle East alone, Veraset's foot traffic Data draws on raw GPS data from tier-1 apps, SDKs, and aggregators of mobile devices to provide customers with accurate, up-to-the-minute information on human movement. Ideal for ad tech, planning, retail, and transportation logistics, Veraset's Movement data (footfall) helps shape strategy and make impactful data-driven decisions.
Veraset’s Africa Footfall Panel includes the following countries: - bahrain-BH - iran-IR - iraq-IQ - israel-IL - jordan-JO - kuwait-KW - lebanon-LB - oman-OM - palestinian territories-PS - qatar-QA - saudi arabia-SA - syria-SY - united arab emirates-AE - yemen-YE
Common Use Cases of Veraset's Foot Traffic Data: - Advertising - Ad Placement, Attribution, and Segmentation - Audience Creation/Building - Dynamic Ad Targeting - Infrastructure Plans - Route Optimization - Public Transit Optimization - Credit Card Loyalty - Competitive Analysis - Risk assessment, Underwriting, and Policy Personalization - Enrichment of Existing Datasets - Trade Area Analysis - Predictive Analytics and Trend Forecasting
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
the following features are included: Throughput and Jitter for each UE-Application and Channel Quality Indicator (CQI) for each UE. The interactions were generated from a realistic network behavior in an office by developing multiple network traffic scenarios.
Leverage the most reliable and compliant mobile device location/foot traffic dataset on the market!
Veraset Movement (GPS Mobility Data) offers unparalleled insights into footfall traffic patterns across nearly four dozen countries in Africa.
Covering 46+ countries, Veraset's Mobility Data draws on raw GPS data from tier-1 apps, SDKs, and aggregators of mobile devices to provide customers with accurate, up-to-the-minute information on human movement.
Ideal for ad tech, planning, retail, and transportation logistics, Veraset's Movement data (Mobility data) helps shape strategy and make impactful data-driven decisions.
Veraset’s Africa Movement Panel includes the following countries: - algeria-DZ - angola-AO - benin-BJ - botswana-BW - burkina faso-BF - burundi-BI - cameroon-CM - central african republic-CF - chad-TD - comoros-KM - congo-brazzaville-CG - congo-kinshasa-CD - djibouti-DJ - egypt-EG - eritrea-ER - ethiopia-ET - gabon-GA - gambia-GM - ghana-GH - guinea-bissau-GW - kenya-KE - lesotho-LS - liberia-LR - libya-LY - madagascar-MG - malawi-MW - mali-ML - mauritius-MU - morocco-MA - mozambique-MZ - namibia-NA - nigeria-NG - rwanda-RW - senegal-SN - seychelles-SC - sierra leone-SL - somalia-SO - south africa-ZA - south sudan-SS - tanzania-TZ - togo-TG - tunisia-TN - uganda-UG - zambia-ZM - zimbabwe-ZW
Companies use Veraset's Mobility Data for: - Advertising - Ad Placement, Attribution, and Segmentation - Audience Creation/Building - Dynamic Ad Targeting - Infrastructure Plans - Route Optimization - Public Transit Optimization - Credit Card Loyalty - Competitive Analysis - Risk assessment, Underwriting, and Policy Personalization - Enrichment of Existing Datasets - Trade Area Analysis - Predictive Analytics and Trend Forecasting
Switzerland is leading the ranking by population share with mobile internet access, recording 95.06 percent. Following closely behind is Ukraine with 95.06 percent, while Moldova is trailing the ranking with 46.83 percent, resulting in a difference of 48.23 percentage points to the ranking leader, Switzerland. The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
https://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/
Lebanon Traffic Dataset
This is a data package of automotive velocities on the roads of Lebanon, crowd-sourced using Tari'ak (طريقك) mobile app from a total of 17,274 smartphones. The set contains 6,006,041 data points that span from March 20, 2014 to October 17, 2019.
File Description
The data is composed in 2 files:
streets.geojson: list of street features referenced in velocities.csv described in GeoJSON format. velocities.csv: location and velocity data of devices in… See the full description on the dataset page: https://huggingface.co/datasets/tari2ak/lebanon-traffic-dataset.
Gain access to high-accuracy foot traffic data covering global mobile visitation patterns and dwell behavior at points of interest. This dataset is derived from billions of opt-in mobile device signals and enables you to monitor how people interact with commercial, civic, and public spaces around the world.
Each record includes visit frequency, time-on-site (dwell time), return rate, and temporal segmentation. The foot traffic data is organized for easy enrichment of mobility data, map data, and location data use cases, and integrates seamlessly into spatial analytics platforms.
Core benefits: •Worldwide POI-level foot traffic data •Hourly time resolution with repeat visitor logic •Works with retail analytics, site planning, and consumer insights •Delivered via API or S3 •Fully anonymized and CCPA/GDPR compliant
Use this foot traffic data to improve operational efficiency, inform investment decisions, and benchmark performance against global movement patterns.
This Mobility & Foot traffic dataset includes enriched mobility data and visitation at POIs to answer questions such as:
-How often do people visit a location? (daily, monthly, absolute, and averages).
-What type of places do they visit? (parks, schools, hospitals, etc)
-Which social characteristics do people have in a certain POI? - Breakdown by type: residents, workers, visitors.
-What's their mobility like during night hours & day hours?
-What's the frequency of the visits by day of the week and hour of the day?
Extra insights
-Visitors´ relative Income Level.
-Visitors´ preferences as derived from their visits to shopping, parks, sports facilities, and churches, among others.
- Footfall measurement in all types of establishments (shopping malls, stand-alone stores, etc).
-Visitors´ preferences as derived from their visits to shopping, parks, sports facilities, and churches, among others.
- Origin/Destiny matrix.
- Vehicular traffic, measurement of speed, types of vehicles, among other insights.
Overview & Key Concepts
Each record corresponds to a ping from a mobile device, at a particular moment in time, and at a particular lat and long. We procure this data from reliable technology partners, which obtain it through partnerships with location-aware apps. All the process is compliant with applicable privacy laws.
We clean, process and enrich these massive datasets with a number of complex, computer-intensive calculations to make them easier to use in different tailor-made solutions for companies and also data science and machine learning applications, especially those related to understanding customer behavior.
Featured attributes of the data
Device speed: based on the distance between each observation and the previous one, we estimate the speed at which the device is moving. This is particularly useful to differentiate between vehicles, pedestrians, and stationery observations.
Night base of the device: we calculate the approximate location of where the device spends the night, which is usually its home neighborhood.
Day base of the device: we calculate the most common daylight location during weekdays, which is usually their work location.
Income level: we use the night neighborhood of the device, and intersect it with available socioeconomic data, to infer the device’s income level. Depending on the country, and the availability of good census data, this figure ranges from a relative wealth index to a currency-calculated income.
POI visited: we intersect each observation with a number of POI databases, to estimate check-ins to different locations. POI databases can vary significantly, in scope and depth, between countries.
Category of visited POI: for each observation that can be attributable to a POI, we also include a standardized location category (park, hospital, among others).
Delivery schemas
We can deliver the data in three different formats:
Full dataset: one record per mobile ping. These datasets are very large, and should only be consumed by experienced teams with large computing budgets.
Visitation stream: one record per attributable visit. This dataset is considerably smaller than the full one but retains most of the more valuable elements in the dataset. This helps understand who visited a specific POI, and characterize and understand the consumer's behavior.
Audience profiles: one record per mobile device in a given period of time (usually monthly). All the visitation stream is aggregated by category. This is the most condensed version of the dataset and is very useful to quickly understand the types of consumers in a particular area and to create cohorts of users.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This competition involves advertisement data provided by BuzzCity Pte. Ltd. BuzzCity is a global mobile advertising network that has millions of consumers around the world on mobile phones and devices. In Q1 2012, over 45 billion ad banners were delivered across the BuzzCity network consisting of more than 10,000 publisher sites which reach an average of over 300 million unique users per month. The number of smartphones active on the network has also grown significantly. Smartphones now account for more than 32% phones that are served advertisements across the BuzzCity network. The "raw" data used in this competition has two types: publisher database and click database, both provided in CSV format. The publisher database records the publisher's (aka partner's) profile and comprises several fields:
publisherid - Unique identifier of a publisher. Bankaccount - Bank account associated with a publisher (may be empty) address - Mailing address of a publisher (obfuscated; may be empty) status - Label of a publisher, which can be the following: "OK" - Publishers whom BuzzCity deems as having healthy traffic (or those who slipped their detection mechanisms) "Observation" - Publishers who may have just started their traffic or their traffic statistics deviates from system wide average. BuzzCity does not have any conclusive stand with these publishers yet "Fraud" - Publishers who are deemed as fraudulent with clear proof. Buzzcity suspends their accounts and their earnings will not be paid
On the other hand, the click database records the click traffics and has several fields:
id - Unique identifier of a particular click numericip - Public IP address of a clicker/visitor deviceua - Phone model used by a clicker/visitor publisherid - Unique identifier of a publisher adscampaignid - Unique identifier of a given advertisement campaign usercountry - Country from which the surfer is clicktime - Timestamp of a given click (in YYYY-MM-DD format) publisherchannel - Publisher's channel type, which can be the following: ad - Adult sites co - Community es - Entertainment and lifestyle gd - Glamour and dating in - Information mc - Mobile content pp - Premium portal se - Search, portal, services referredurl - URL where the ad banners were clicked (obfuscated; may be empty). More details about the HTTP Referer protocol can be found in this article. Related Publication: R. J. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F.-D. Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M. N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z.-Y. Aung, W. L. Woon, W. Chen, D. Patel, and D. Berrar. (2014). Detecting click fraud in online advertising: A data mining approach, Journal of Machine Learning Research, 15, 99-140.
Mobile broadband internet traffic (outside the country)
This Mobility & Foot traffic dataset includes enriched mobility data and visitation at POIs to answer questions such as:
-How often do people visit a location? (daily, monthly, absolute, and averages).
-What type of places do they visit? (parks, schools, hospitals, etc).
-Which social characteristics do people have in a certain POI? - Breakdown by type: residents, workers, visitors.
-What's their mobility like during night hours & day hours?
-What's the frequency of the visits by day of the week and hour of the day?
Extra insights
-Visitors´ relative Income Level.
- Footfall measurement in all types of establishments (shopping malls, stand-alone stores, etc).
-Visitors´ preferences as derived from their visits to shopping, parks, sports facilities, and churches, among others.
- Origin/Destiny matrix.
- Vehicular traffic, measurement of speed, types of vehicles, among other insights.
Overview & Key Concepts
Each record corresponds to a ping from a mobile device, at a particular moment in time, and at a particular lat and long. We procure this data from reliable technology partners, which obtain it through partnerships with location-aware apps. All the process is compliant with GDPR and all applicable privacy laws.
We clean, process, and enrich these massive datasets with a number of complex, computer-intensive calculations to make them easier to use in different tailor-made solutions for companies and also data science and machine learning applications, especially those related to understanding customer behavior.
Featured attributes of the data
Device speed: based on the distance between each observation and the previous one, we estimate the speed at which the device is moving. This is particularly useful to differentiate between vehicles, pedestrians, and stationery observations.
Night base of the device: we calculate the approximate location of where the device spends the night, which is usually its home neighborhood.
Day base of the device: we calculate the most common daylight location during weekdays, which is usually their work location.
Income level: we use the night neighborhood of the device, and intersect it with available socioeconomic data, to infer the device’s income level. Depending on the country, and the availability of good census data, this figure ranges from a relative wealth index to a currency-calculated income.
POI visited: we intersect each observation with a number of POI databases, to estimate check-ins to different locations. POI databases can vary significantly, in scope and depth, between countries.
Category of visited POI: for each observation that can be attributable to a POI, we also include a standardized location category (park, hospital, among others).
Delivery schemas
We can deliver the data in three different formats:
Full dataset: one record per mobile ping. These datasets are very large, and should only be consumed by experienced teams with large computing budgets.
Visitation stream: one record per attributable visit. This dataset is considerably smaller than the full one but retains most of the more valuable elements in the dataset. This helps understand who visited a specific POI, and characterize and understand the consumer's behavior.
Audience profiles: one record per mobile device in a given period of time (usually monthly). All the visitation stream is aggregated by category. This is the most condensed version of the dataset and is very useful to quickly understand the types of consumers in a particular area and to create cohorts of users.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
we extract human trips from Call Records Detail data. Combining traffic analysis zone dataset
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The table shows the number of mobile subscriptions and calls , mobile data traffic data per quarter
Leverage the most reliable and compliant global mobility and foot traffic dataset on the market. Veraset Movement (Mobile Device GPS Mobility Data) offers unparalleled real-time insights into footfall traffic patterns globally.
Covering 200+ countries, Veraset's Mobile Location Data draws on raw GPS data from tier-1 apps, SDKs, and aggregators of mobile devices to provide customers with accurate, up-to-the-minute information on human movement.
Ideal for ad tech, planning, retail analysis, and transportation logistics, Veraset's mobile location data helps in shaping strategy and making data-driven decisions.
Veraset Global Movement panel (mobile location) includes: - 1.8+ Billion Devices Monthly - 200 Billion Pings Monthly Device and Ping counts by Country are available upon request
Common Use Cases of Veraset's Mobile Location Data: - Advertising - Ad Placement, Attribution, and Segmentation - Audience Creation/Building - Dynamic Ad Targeting - Infrastructure Plans - Route Optimization - Public Transit Optimization - Credit Card Loyalty - Competitive Analysis - Risk assessment, Underwriting, and Policy Personalization - Enrichment of Existing Datasets - Trade Area Analysis - Predictive Analytics and Trend Forecasting
Please visit: https://www.veraset.com/docs/movement for more information and schemas
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Streaming is by far the predominant type of traffic in communication networks. With thispublic dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3G/4G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.