Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains detailed specifications and official launch prices of various mobile phone models from different companies. It provides insights into smartphone hardware, pricing trends, and brand competitiveness across multiple countries. The dataset includes key features such as RAM, camera specifications, battery capacity, processor details, and screen size.
One important aspect of this dataset is the pricing information. The recorded prices represent the official launch prices of the mobile phones at the time they were first introduced in the market. Prices vary based on the country and the launch period, meaning older models reflect their original launch prices, while newer models include their most recent launch prices. This makes the dataset valuable for studying price trends over time and comparing smartphone affordability across different regions.
Features:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
TechCorner Mobile Sales & Customer Insights is a real-world dataset capturing 10 months of mobile phone sales transactions from a retail shop in Bangladesh. This dataset was designed to analyze customer location, buying behavior, and the impact of Facebook marketing efforts.
The primary goal was to identify whether customers are from the local area (Rangamati Sadar, Inside Rangamati) or completely outside Rangamati. Since TechCorner operates a Facebook page, the dataset also includes insights into whether Facebook marketing is effectively reaching potential buyers.
Additionally, the dataset helps in determining: ✔ How many customers are new vs. returning buyers ✔ If customers are followers of the shop’s Facebook page ✔ Whether a customer was recommended by an existing buyer
Retail sales analysis to understand product demand fluctuations.
Marketing impact measurement (Facebook engagement vs. actual purchase behavior).
Customer segmentation (local vs. non-local buyers, social media influence, word-of-mouth impact).
Sales trend analysis based on preferred phone models and price ranges.
With a realistic, non-uniform distribution of daily sales and some intentional missing values, this dataset reflects actual retail business conditions rather than artificially smooth AI-generated data.
Does he/she Come from Facebook Page? → Whether the customer came from a Facebook page (Yes/No). Used to analyze Facebook marketing reach.
Does he/she Followed Our Page? → Whether the customer is already a follower of the shop’s Facebook page (Yes/No). Helps measure brand loyalty and organic engagement.
Did he/she buy any mobile before? → Whether the customer is a repeat buyer (Yes/No). Determines the percentage of returning customers.
Did he/she hear of our shop before? → Whether the customer knew about the shop before purchasing (Yes/No). Identifies the impact of referrals or previous marketing efforts.
Was this customer recommended by an old customer? → Whether an existing customer referred them to the shop (Yes/No). Helps evaluate the effectiveness of word-of-mouth marketing.
This dataset is derived from real-world mobile sales transactions recorded at TechCorner, a retail shop in Bangladesh. It accurately reflects customer purchasing behavior, pricing trends, and the effectiveness of Facebook marketing in driving sales. Special appreciation to TechCorner for providing comprehensive insights into daily sales patterns, customer demographics, and market dynamics.
📊 Predictive modeling of sales trends based on customer demographics and marketing channels. 📈 Marketing effectiveness analysis (impact of Facebook promotions vs. organic sales). 🔍 Clustering customers based on purchasing habits (new vs. returning buyers, Facebook users vs. walk-ins). 📌 Understanding demand for different smartphone brands in a local retail market. 🚀 Analyzing how word-of-mouth recommendations influence new customer acquisition.
💡 Can you build a model to predict if a customer is likely to return? 💬 How effective is Facebook in driving actual sales compared to walk-ins? 🔍 Can we cluster customers based on behavior and brand preferences?
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset simulates sales transactions for mobile phones and laptops, including product specifications, customer details, and sales information. It contains 50,000 rows of randomly generated data to help analyze product sales trends, customer purchasing behavior, and regional distribution of sales.
Dataset Overview
Purpose of the Dataset
This dataset can be used for:
✅ Sales Analysis – Understanding product demand and pricing trends.
✅ Customer Behavior Analysis– Identifying buying patterns across locations.
✅ Inventory Management – Monitoring inward and dispatched product movements.
✅ Machine Learning & AI – Predicting sales trends, customer preferences, and stock management.
Key Features in the Dataset
Product Information
Sales & Pricing Details
Customer & Location Details
Technical Specifications
-Core Specification (For Laptops): Includes processor models like i3, i5, i7, i9, Ryzen 3-9.
-Processor Specification (For Mobiles): Includes processors like Snapdragon, Exynos, Apple A-Series, and MediaTek Dimensity.
-RAM: Randomly assigned memory sizes (4GB to 32GB).
-ROM: Storage capacity (64GB to 1TB).
-SSD (For Laptops): Additional storage (256GB to 2TB), "N/A" for mobile phones.
Potential Use Cases:
Business Intelligence Dashboards
Market Trend Analysis
Supply Chain Optimization
Customer Segmentation
Machine Learning Model Training (Sales Prediction, Price Optimization, etc.)
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Mobile Sales Data (2023–2024)
Overview
This dataset contains information about mobile phone sales, including models, quantities sold, unit prices, total revenue, and sale dates.It has been prepared for students, analysts, and anyone who wants to practice business intelligence, sales analytics, or basic machine learning. The dataset is simple, clear, and suitable for classroom assignments, dashboard building, and Excel or Python practice.
Dataset Structure… See the full description on the dataset page: https://huggingface.co/datasets/HassanAhmedAI/mobile-sales-data.
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Phones price classification dataset is a collection of mobile phone sales data from various companies to estimate the price of a mobile phone.
2) Data Utilization (1) Phones price classification data has characteristics that: • The dataset includes factors related to the performance of the mobile phone such as battery power, speed, dual sim and internal memory. (2) Phones price classification data can be used to: • Market Research: Help you understand competitors' product features and pricing strategies, and develop differentiation strategies. • Customer Preference Analysis: Identify the features of your mobile phone that you value.
Facebook
TwitterThis dataset captures retail sales performance data for mobile phones across different regions, brands, and time periods. It can be used for sales trend analysis, forecasting, and customer behavior modeling.
| Column Name | Description |
|---|---|
| Transaction ID | Unique identifier for each transaction. |
| Day | Day of the month when the sale occurred (1–31). |
| Month | Month number (e.g., 10 for October) when the sale occurred. |
| Year | Year of the transaction (e.g., 2021). |
| Day Name | Name of the day (e.g., Saturday, Sunday) for the transaction date. |
| Brand | Mobile phone brand (e.g., Xiaomi, Vivo, OnePlus). |
| Units Sold | Number of units sold in that transaction. |
| Price Per Unit | Selling price per mobile unit in local currency. |
| City | The city where the transaction took place. |
| Payment Method | Mode of payment used by the customer (e.g., UPI, Cash, Credit Card). |
| Customer Ratings | Rating provided by the customer (usually on a scale from 1 to 5). |
| Mobile Model | Specific model of the mobile phone sold (e.g., Redmi Note 10, Vivo Y51). |
This is a simulated/commercial dataset, not tied to a specific retailer, and can be used for academic or learning purposes.
Facebook
TwitterGlobal B2B Mobile Phone Number Database | 100M+ Verified Contacts | 95% Accuracy Forager.ai provides the world’s most reliable mobile phone number data for businesses that refuse to compromise on quality. With 100 million+ professionally verified mobile numbers refreshed every 3 weeks, our database ensures 95% accuracy – so your teams never waste time on dead-end leads.
Why Our Data Wins ✅ Accuracy You Can Trust 95% of mobile numbers are verified against live carrier records and tied to current job roles. Say goodbye to “disconnected number” voicemails.
✅ Depth Beyond Digits Each contact includes 150+ data points:
Direct mobile numbers
Current job title, company, and department
Full career history + education background
Location data + LinkedIn profiles
Company size, industry, and revenue
✅ Freshness Guaranteed Bi-weekly updates combat job-hopping and role changes – critical for sales teams targeting decision-makers.
✅ Ethically Sourced & Compliant First-party collected data with full GDPR/CCPA compliance.
Who Uses This Data?
Sales Teams: Cold-call C-suite prospects with verified mobile numbers.
Marketers: Run hyper-personalized SMS/WhatsApp campaigns.
Recruiters: Source passive candidates with up-to-date contact intel.
Data Vendors: License premium datasets to enhance your product.
Tech Platforms: Power your SaaS tools via API with enterprise-grade B2B data.
Flexible Delivery, Instant Results
API (REST): Real-time integration for CRMs, dialers, or marketing stacks
CSV/JSON: Campaign-ready files.
PostgreSQL: Custom databases for large-scale enrichment
Compliance: Full audit trails + opt-out management
Why Forager.ai? → Proven ROI: Clients see 62% higher connect rates vs. industry averages (request case studies). → No Guesswork: Test-drive free samples before committing. → Scalable Pricing: Pay per record, license datasets, or get unlimited API access.
B2B Mobile Phone Data | Verified Contact Database | Sales Prospecting Lists | CRM Enrichment | Recruitment Phone Numbers | Marketing Automation | Phone Number Datasets | GDPR-Compliant Leads | Direct Dial Contacts | Decision-Maker Data
Need Proof? Contact us to see why Fortune 500 companies and startups alike trust Forager.ai for mission-critical outreach.
Facebook
TwitterComprehensive dataset tracking mobile device share of Black Friday ecommerce sales from 2020 to 2024, including conversion rates, traffic percentages, year-over-year growth, and demographic breakdowns by generation. Data sourced from Adobe Analytics, Salesforce, and Digital Commerce 360.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset Description: Smartphone Sales Transactions
This dataset contains information about smartphone sales transactions. Each row represents a unique transaction and includes detailed data points such as the date of the transaction, product details, customer demographics, payment methods, and customer ratings. The dataset can be useful for sales analysis, customer behavior study, and market trend prediction.
Columns:
Transaction ID – Unique identifier for each transaction.
Day – Day of the month when the transaction occurred.
Month – Month of the transaction.
Year – Year of the transaction.
Day Name – Name of the day (e.g., Saturday).
Brand – Smartphone brand sold (e.g., Xiaomi, Vivo).
Units Sold – Number of smartphone units sold in the transaction.
Price Per Unit – Selling price per unit (in local currency).
Customer Name – Name of the customer.
Customer Age – Age of the customer.
City – City where the transaction took place.
Payment Method – Method used for payment (e.g., UPI, Credit Card).
Customer Ratings – Rating given by the customer (1–5 scale).
Mobile Model – Specific model of the smartphone sold.
Facebook
TwitterDiscover the ultimate resource for your B2B needs with our meticulously curated dataset, featuring 148MM+ highly relevant US B2B Contact Data records and associated company information.
Very high fill rates for Phone Number, including for Mobile Phone!
This encompasses a diverse range of fields, including Contact Name (First & Last), Work Address, Work Email, Personal Email, Mobile Phone, Direct-Dial Work Phone, Job Title, Job Function, Job Level, LinkedIn URL, Company Name, Domain, Email Domain, HQ Address, Employee Size, Revenue Size, Industry, NAICS and SIC Codes + Descriptions, ensuring you have the most detailed insights for your business endeavors.
Key Features:
Extensive Data Coverage: Access a vast pool of B2B Contact Data records, providing valuable information on where the contacts work now, empowering your sales, marketing, recruiting, and research efforts.
Versatile Applications: Leverage this robust dataset for Sales Prospecting, Lead Generation, Marketing Campaigns, Recruiting initiatives, Identity Resolution, Analytics, Research, and more.
Phone Number Data Inclusion: Benefit from our comprehensive Phone Number Data, ensuring you have direct and effective communication channels. Explore our Phone Number Datasets and Phone Number Databases for an even more enriched experience.
Flexible Pricing Models: Tailor your investment to match your unique business needs, data use-cases, and specific requirements. Choose from targeted lists, CSV enrichment, or licensing our entire database or subsets to seamlessly integrate this data into your products, platform, or service offerings.
Strategic Utilization of B2B Intelligence:
Sales Prospecting: Identify and engage with the right decision-makers to drive your sales initiatives.
Lead Generation: Generate high-quality leads with precise targeting based on specific criteria.
Marketing Campaigns: Amplify your marketing strategies by reaching the right audience with targeted campaigns.
Recruiting: Streamline your recruitment efforts by connecting with qualified candidates.
Identity Resolution: Enhance your data quality and accuracy by resolving identities with our reliable dataset.
Analytics and Research: Fuel your analytics and research endeavors with comprehensive and up-to-date B2B insights.
Access Your Tailored B2B Data Solution:
Reach out to us today to explore flexible pricing options and discover how Salutary Data Company Data, B2B Contact Data, B2B Marketing Data, B2B Email Data, Phone Number Data, Phone Number Datasets, and Phone Number Databases can transform your business strategies. Elevate your decision-making with top-notch B2B intelligence.
Facebook
TwitterComprehensive dataset tracking mobile device share of Cyber Monday online sales from 2019 to 2024, including total sales figures, mobile sales volumes, year-over-year growth rates, and key performance metrics such as conversion rates, page load times, and BNPL transaction data.
Facebook
TwitterIn the third quarter of 2025, Samsung shipped approximately **** million smartphones, marking an increase compared to both the previous quarter and the same period in the prior year. The company’s strong sales performance consistently positions Samsung as the world’s leading smartphone vendor, ahead of Apple. Samsung smartphone sales – how many phones does Samsung sell? Global smartphone sales reached over *** billion units during 2024. While the global smartphone market is led by Samsung and Apple, Xiaomi has gained ground following the decline of Huawei. Together, these three companies hold more than ** percent of the global smartphone market share.
Facebook
TwitterThe number of smartphone users in France was forecast to continuously increase between 2024 and 2029 by in total 3.2 million users (+5.96 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 56.89 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Belgium and Luxembourg.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crowdsourced original images of a wide variety of mobile phones
About Dataset
This dataset is collected by* DataCluster Labs*, India. To download full dataset or to submit a request for your new data collection needs, please drop a mail to: sales@datacluster.ai
This dataset is an extremely challenging set of over 3000+ original Mobile Phone images captured and crowdsourced from over 1000+ urban and rural areas, where each image is manually reviewed and verified by computer vision professionals at ****DC Labs.
Dataset Features 1. Dataset size : 3000+ 2. Captured by : Over 1000+ crowdsource contributors 3. Resolution : 99% images HD and above (1920x1080 and above) 4. Location : Captured with 600+ cities accross India 5. Diversity : Various lighting conditions like day, night, varied distances, view points etc. 6. Device used : Captured using mobile phones in 2020-2021 7. Applications : Mobile Phone detection, cracked screen detection, etc.
Available Annotation formats COCO, YOLO, PASCAL-VOC, Tf-Record
The images in this dataset are exclusively owned by Data Cluster Labs and were not downloaded from the internet. To access a larger portion of the training dataset for research and commercial purposes, a license can be purchased. Contact us at sales@datacluster.ai
Visit www.datacluster.ai to know more.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Egypt number dataset can be a great element for direct marketing nationwide right now. Also, this Egypt number dataset has thousands of active mobile numbers that help to increase sales in the company. Most importantly, you can develop your business by bringing many trustworthy B2C customers. Likewise, clients can send you a fast response whether they need it or not. Furthermore, this Egypt number dataset is a very essential tool for telemarketing. In other words, you get all these 95% valid leads at a very cheap price from us. Most importantly, our List To Data website still follows the full GDPR rules strictly. In addition, the return on investment (ROI) will give you satisfaction from the business. Egypt phone data is a very powerful contact database that you can get in your budget. Moreover, the Egypt phone data is very beneficial for fast business growth through direct marketing. In fact, our List To Data assures you that we give verified numbers at an affordable cost. As such, you can say that it brings you more profit than your expense. Additionally, the Egypt phone data has all the details like name, age, gender, location, and business. Anyway, people can connect with the largest group of consumers quickly through this. However, people can use these cell phone numbers without any worry. Thus, buy it from us as our experts are ready to present the most satisfactory service. Egypt phone number list is very helpful for any business and marketing. People can use this Egypt phone number list to develop their telemarketing. They can easily reach consumers through direct calls or SMS. In other words, we gather all the database and recheck it, so you should buy our packages right now. Furthermore, you can believe this correct directory to maximize your company’s growth rapidly. Also, we deliver the Egypt phone number list in an Excel and CSV file. Actually, the country’s mobile number library will help you in getting more profit than investment. Similarly, the List To Data expert team is ready to help you 24 hours with any necessary details that can help your business. Hence, buy this telemarketing lead at a very reasonable price to expand sales through B2C customers.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Sold Production of Mobile Phones in Italy 2024 - 2028 Discover more data with ReportLinker!
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains detailed information on mobile phones listed during the Amazon Great Indian Sale 2025. It includes product names, brands, models, storage, RAM, price, discounts, ratings, review counts, sale events, and the date collected.
The data has been cleaned, duplicates removed, missing values handled, and relevant text features extracted, making it ready for analysis.
Use Cases: • Analyze pricing trends and brand strategies during festive sales. • Explore relationships between price, ratings, and reviews. • Train regression or classification models for price prediction. • Build recommendation systems or market segmentation models. • Practice real-world data cleaning, EDA, and feature engineering.
Context: Collected from Amazon India, this dataset focuses solely on smartphones, filtered to remove irrelevant entries, and structured for easy analysis of trends and consumer behavior.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Luxembourg number dataset is a popular platform for cell phone number lists. Many companies in Luxembourg use our phone number library for promotions. Our services have many advantages. Firstly, you will receive our products within 24 hours after confirming your order and payment. Secondly, our phone number list works on all devices, like smartphones, computers, and tablets. Thirdly, our packages are affordable and fit every budget. Moreover, our Luxembourg number dataset also has a filter option. This allows you to find specific numbers based on your needs. You will also receive a free updated telemarketing list six months after purchase. Our database complies with GDPR and provides over 95% accuracy. If there are any errors, we will fix them for free. This ensures you have accurate and current phone numbers, improving your telemarketing efforts. Luxembourg phone data helps you easily contact people or businesses in Luxembourg. Our system is user-friendly and saves time. It also provides additional details like location, age, and gender. We offer a “Do Not Call” list to avoid legal issues in SMS marketing. You can get both a call list and an SMS marketing list in one package. Also, List to Data helps businesses find the right telephone numbers quickly, which makes the process even easier. In addition, our Luxembourg phone data contains both B2B and B2C phone numbers, which support the growth of your business. You can get our customer-friendly after-sales service. We also provide excellent customer service 24/7. If you have any questions or problems, please call us anytime. We are always here to assist you in any situation. Luxembourg phone number list is a valuable tool. It helps you connect with people in Luxembourg. The list includes phone numbers that help companies reach new customers. With name, age, and contact information, it is perfect for marketing. So, use it for promotions, updates, or feedback. This phone number list is available at a reasonable price. So, buy this mobile phone number list at a low price and get huge benefits. Moreover, our Luxembourg phone number list offers good value for your money. Since they update and ensure its accuracy, it helps you get the best results. Moreover, telemarketing saves money and grows your brand. Our cell phone list increases sales. Therefore, you will get great returns on marketing.
Facebook
TwitterBytemine provides access to one of the largest and most accurate US phone number databases available, featuring over 80 million verified mobile numbers. Our data includes both B2C and B2B contacts, enriched with comprehensive personal and professional details that support a wide range of use cases — from sales and marketing outreach to lead enrichment, identity resolution, and platform integration.
Our US Phone Number Data includes:
80 million+ verified US mobile numbers B2C and B2B contacts with name, email, location, and more Work emails and personal emails 57 contact-level data points including job title, company name, seniority, industry, geography, and more
This dataset gives you unmatched access to individuals across the United States, allowing you to connect with professionals and consumers directly through mobile-first campaigns. Whether you're targeting executives, small business owners, or general consumers, Bytemine provides the precision and scale to reach the right audience.
All phone numbers in our database are:
Verified and regularly updated Matched with accurate metadata (name, email, job, etc.) Compliant with data usage policies Sourced through direct licensing from trusted partners including B2B platforms, employment systems, and verified consumer data sources
This data is ideal for:
Cold calling and phone-based outreach SMS marketing and mobile-based campaigns CRM and marketing automation enrichment Identity resolution and contact matching Prospect list building and segmentation B2B and B2C marketing and retargeting App-based user targeting and onboarding Customer data platforms that need verified mobile identifiers
With access to both business and consumer profiles, Bytemine’s US Phone Number Data allows companies to execute highly targeted and personalized campaigns. Each contact is enriched with up to 57 attributes, giving your team deep insight into who the contact is, where they work, and how best to reach them.
Data can be accessed in two flexible ways:
Our API makes it easy to integrate contact data into your existing tools, workflows, or SaaS platform. Whether you're building a lead generation engine, contact enrichment feature, or an internal prospecting tool, Bytemine delivers the clean, structured data needed to power it.
Bytemine’s phone number dataset is trusted by sales teams, marketing agencies, growth hackers, product teams, and data-driven platforms that rely on accurate contact information to engage the right audience.
If you need verified, mobile-first contact data for B2B or B2C outreach, Bytemine delivers the scale, accuracy, and flexibility required to grow your pipeline, enrich your database, and reach your customers directly.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains detailed specifications and official launch prices of various mobile phone models from different companies. It provides insights into smartphone hardware, pricing trends, and brand competitiveness across multiple countries. The dataset includes key features such as RAM, camera specifications, battery capacity, processor details, and screen size.
One important aspect of this dataset is the pricing information. The recorded prices represent the official launch prices of the mobile phones at the time they were first introduced in the market. Prices vary based on the country and the launch period, meaning older models reflect their original launch prices, while newer models include their most recent launch prices. This makes the dataset valuable for studying price trends over time and comparing smartphone affordability across different regions.
Features: