The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This competition involves advertisement data provided by BuzzCity Pte. Ltd. BuzzCity is a global mobile advertising network that has millions of consumers around the world on mobile phones and devices. In Q1 2012, over 45 billion ad banners were delivered across the BuzzCity network consisting of more than 10,000 publisher sites which reach an average of over 300 million unique users per month. The number of smartphones active on the network has also grown significantly. Smartphones now account for more than 32% phones that are served advertisements across the BuzzCity network. The "raw" data used in this competition has two types: publisher database and click database, both provided in CSV format. The publisher database records the publisher's (aka partner's) profile and comprises several fields:
publisherid - Unique identifier of a publisher. Bankaccount - Bank account associated with a publisher (may be empty) address - Mailing address of a publisher (obfuscated; may be empty) status - Label of a publisher, which can be the following: "OK" - Publishers whom BuzzCity deems as having healthy traffic (or those who slipped their detection mechanisms) "Observation" - Publishers who may have just started their traffic or their traffic statistics deviates from system wide average. BuzzCity does not have any conclusive stand with these publishers yet "Fraud" - Publishers who are deemed as fraudulent with clear proof. Buzzcity suspends their accounts and their earnings will not be paid
On the other hand, the click database records the click traffics and has several fields:
id - Unique identifier of a particular click numericip - Public IP address of a clicker/visitor deviceua - Phone model used by a clicker/visitor publisherid - Unique identifier of a publisher adscampaignid - Unique identifier of a given advertisement campaign usercountry - Country from which the surfer is clicktime - Timestamp of a given click (in YYYY-MM-DD format) publisherchannel - Publisher's channel type, which can be the following: ad - Adult sites co - Community es - Entertainment and lifestyle gd - Glamour and dating in - Information mc - Mobile content pp - Premium portal se - Search, portal, services referredurl - URL where the ad banners were clicked (obfuscated; may be empty). More details about the HTTP Referer protocol can be found in this article. Related Publication: R. J. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F.-D. Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M. N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z.-Y. Aung, W. L. Woon, W. Chen, D. Patel, and D. Berrar. (2014). Detecting click fraud in online advertising: A data mining approach, Journal of Machine Learning Research, 15, 99-140.
The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.
Switzerland is leading the ranking by population share with mobile internet access , recording 95.06 percent. Following closely behind is Ukraine with 95.06 percent, while Moldova is trailing the ranking with 46.83 percent, resulting in a difference of 48.23 percentage points to the ranking leader, Switzerland. The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
The 802.11 standard includes several management features and corresponding frame types. One of them are probe requests (PR). They are sent by mobile devices in the unassociated state to search the nearby area for existing wireless networks. The frame part of PRs consists of variable length fields called information elements (IE). IE fields represent the capabilities of a mobile device, such as data rates.
The dataset includes PRs collected in a controlled rural environment and in a semi-controlled indoor environment under different measurement scenarios.
It can be used for various use cases, e.g., analysing MAC randomization, determining the number of people in a given location at a given time or in different time periods, analysing trends in population movement (streets, shopping malls, etc.) in different time periods, etc.
Measurement setup
The system for collecting PRs consists of a Raspberry Pi 4 (RPi) with an additional WiFi dongle to capture Wi-Fi signal traffic in monitoring mode. Passive PR monitoring is performed by listening to 802.11 traffic and filtering out PR packets on a single WiFi channel.
The following information about each PR received is collected: MAC address, Supported data rates, extended supported rates, HT capabilities, extended capabilities, data under extended tag and vendor specific tag, interworking, VHT capabilities, RSSI, SSID and timestamp when PR was received.
The collected data was forwarded to a remote database via a secure VPN connection. A Python script was written using the Pyshark package for data collection, preprocessing and transmission.
Data preprocessing
The gateway collects PRs for each consecutive predefined scan interval (10 seconds). During this time interval, the data are preprocessed before being transmitted to the database.
For each detected PR in the scan interval, IEs fields are saved in the following JSON structure:
PR_IE_data =
{
'DATA_RTS': {'SUPP': DATA_supp , 'EXT': DATA_ext},
'HT_CAP': DATA_htcap,
'EXT_CAP': {'length': DATA_len, 'data': DATA_extcap},
'VHT_CAP': DATA_vhtcap,
'INTERWORKING': DATA_inter,
'EXT_TAG': {'ID_1': DATA_1_ext, 'ID_2': DATA_2_ext ...},
'VENDOR_SPEC': {VENDOR_1:{
'ID_1': DATA_1_vendor1,
'ID_2': DATA_2_vendor1
...},
VENDOR_2:{
'ID_1': DATA_1_vendor2,
'ID_2': DATA_2_vendor2
...}
...}
}
Supported data rates and extended supported rates are represented as arrays of values that encode information about the rates supported by a mobile device. The rest of the IEs data is represented in hexadecimal format. Vendor Specific Tag is structured differently than the other IEs. This field can contain multiple vendor IDs with multiple data IDs with corresponding data. Similarly, the extended tag can contain multiple data IDs with corresponding data.
Missing IE fields in the captured PR are not included in PR_IE_DATA.
When a new MAC address is detected in the current scan time interval, the data from PR is stored in the following structure:
{'MAC': MAC_address, 'SSIDs': [ SSID ], 'PROBE_REQs': [PR_data] },
where PR_data is structured as follows:
{
'TIME': [ DATA_time ],
'RSSI': [ DATA_rssi ],
'DATA': PR_IE_data
}.
This data structure allows storing only TOA and RSSI for all PRs originating from the same MAC address and containing the same PR_IE_data. All SSIDs from the same MAC address are also stored.
The data of the newly detected PR is compared with the already stored data of the same MAC in the current scan time interval.
If identical PR's IE data from the same MAC address is already stored, then only data for the keys TIME and RSSI are appended.
If no identical PR's IE data has yet been received from the same MAC address, then PR_data structure of the new PR for that MAC address is appended to PROBE_REQs key.
The preprocessing procedure is shown in Figure ./Figures/Preprocessing_procedure.png
At the end of each scan time interval, all processed data is sent to the database along with additional metadata about the collected data e.g. wireless gateway serial number and scan start and end timestamps. For an example of a single PR captured, see the ./Single_PR_capture_example.json file.
Environments description
We performed measurements in a controlled rural outdoor environment and in a semi-controlled indoor environment of the Jozef Stefan Institute.
See the Excel spreadsheet Measurement_informations.xlsx for a list of mobile devices tested.
Indoor environment
We used 3 RPi's for the acquisition of PRs in the Jozef Stefan Institute. They were placed indoors in the hallways as shown in the ./Figures/RPi_locations_JSI.png. Measurements were performed on weekend to minimize additional uncontrolled traffic from users' mobile devices. While there is some overlap in WiFi coverage between the devices at the location 2 and 3, the device at location 1 has no overlap with the other two devices.
Rural environment outdoors
The three RPi's used to collect PRs were placed at three different locations with non-overlapping WiFi coverage, as shown in ./Figures/RPi_locations_rural_env.png. Before starting the measurement campaign, all measured devices were turned off and the environment was checked for active WiFi devices. We did not detect any unknown active devices sending WiFi packets in the RPi's coverage area, so the deployment can be considered fully controlled.
All known WiFi enabled devices that were used to collect and send data to the database used a global MAC address, so they can be easily excluded in the preprocessing phase. MAC addresses of these devices can be found in the ./Measurement_informations.xlsx spreadsheet.
Note: The Huawei P20 device with ID 4.3 was not included in the test in this environment.
Scenarios description
We performed three different scenarios of measurements.
Individual device measurements
For each device, we collected PRs for one minute with the screen on, followed by PRs collected for one minute with the screen off. In the indoor environment the WiFi interfaces of the other devices not being tested were disabled. In rural environment other devices were turned off. Start and end timestamps of the recorded data for each device can be found in the ./Measurement_informations.xlsx spreadsheet under the Indoor environment of Jozef Stefan Institute sheet and the Rural environment sheet.
Three groups test
In this measurement scenario, the devices were divided into three groups. The first group contained devices from different manufacturers. The second group contained devices from only one manufacturer (Samsung). Half of the third group consisted of devices from the same manufacturer (Huawei), and the other half of devices from different manufacturers. The distribution of devices among the groups can be found in the ./Measurement_informations.xlsx spreadsheet.
The same data collection procedure was used for all three groups. Data for each group were collected in both environments at three different RPis locations, as shown in ./Figures/RPi_locations_JSI.png and ./Figures/RPi_locations_rural_env.png.
At each location, PRs were collected from each group for 10 minutes with the screen on. Then all three groups switched locations and the process was repeated. Thus, the dataset contains measurements from all three RPi locations of all three groups of devices in both measurement environments. The group movements and the timestamps for the start and end of the collection of PRs at each loacation can be found in spreadsheet ./Measurement_informations.xlsx.
One group test
In the last measurement scenario, all devices were grouped together. In rural evironement we first collected PRs for 10 minutes while the screen was on, and then for another 10 minutes while the screen was off. In indoor environment data were collected at first location with screens on for 10 minutes. Then all devices were moved to the location of the next RPi and PRs were collected for 5 minutes with the screen on and then for another 5 minutes with the screen off.
Folder structure
The root directory contains two files in JSON format for each of the environments where the measurements took place (Data_indoor_environment.json and Data_rural_environment.json). Both files contain collected PRs for the entire day that the measurements were taken (12:00 AM to 12:00 PM) to get a sense of the behaviour of the unknown devices in each environment. The spreadsheet ./Measurement_informations.xlsx. contains three sheets. Devices description contains general information about the tested devices, RPis, and the assigned group for each device. The sheets Indoor environment of Jozef Stefan Institute and Rural environment contain the corresponding timestamps for the start and end of each measurement scenario. For the scenario where the devices were divided into groups, additional information about the movements between locations is included. The location names are based on the RPi gateway ID and may differ from those on the figures showing the
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The World Telecommunication/ICT Indicators database contains time series data for more than 180 telecommunication/ICT (Information and Communication Technologies) statistics. It covers fixed-telephone networks, mobile-cellular telephone subscriptions, quality of service, Internet (including fixed- and mobile-broadband subscription data), traffic, staff, prices, revenue, investment and statistics on ICT access and use by households and individuals. Selected demographic, macroeconomic and broadcasting statistics are also included. The data is for the years 1960, 1965, 1970 and annually from 1975 to 2017. The WTI Database also includes: Economy yearbook pages featuring in the Yearbook of Statistics. These pages show data in economy tables allowing readers to view the evolution of telecommunication services by economy. Statistics are provided for the ten-year period 2007-2017. The latest (2017) data on ICT access and use by households and individuals. Data are presented in tables and broken down by socio-demographic variables, such as age, sex, income and education level etc. Please note: The World Telecommunication/ICT Indicators database is a relational database which must be used with the associated Software Application. In order to search and extract data from the Data file, users will need to download and install the Application and the Data file to the same folder on their personal computers. The database must be installed by first launching the executable (ending in “.exe”) file.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The following dataset presents the energy cycle characteristics for 5G/6G mobile systems supported by Renewable Energy Sources (RES) and/or Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Surfaces (RISs). In addition, within the dataset, the energy gain related to the engagement of RES within the Radio Access Network (RAN) has also been distinguished.
The considered network scenario includes 8 three- (_results_gcas.csv) or one-cell (_results_scas.csv & _results_kras.csv) base stations (BSs) placed within the Poznan city (surroundings of the old market) and supported by Renewable Energy Sources — photovoltaic panels (PVs) and/or wind turbines (WTs). The aforementioned base stations can be treated as stationary towers or mobile access points (e.g., drones/UAVs). Those latter have been additionally equipped with RIS devices, which are able to reflect and manipulate a radio signal to influence occurrences such as interferences, coverage, or human exposure. However, the use of RISs has been taken into account only to evaluate the impact of the engagement of such devices on the energy side of the mobile system, omitting the changes in radio characteristics. The network traffic has been assumed to be fixed (64 mobile users (UEs) with 100 Mbps downlink — DL, and 25 Mbps uplink — UL, per each), however, its density in specific parts of the city is modeled randomly for each simulation run. The simulation runs have been performed for 4 dates (vernal equinox, summer solstice, autumn equinox, winter solstice), each one from a different season of the year. The aim of such an approach was to highlight the impact of the time of the day and the year on the energy gain obtained thanks to enabling RES generators. The weather conditions assumed within the simulation are typical for the climate in Poland.
The energy-cycle calculations (system's power consumption, renewable energy production, and excessive energy storage) have been based on the mathematical formulas from the scientific literature and performed within the digital simulation runs by using the Green Radio Access Network Design (GRAND) tool (developed by teams from the Ghent University & Poznan University of Technology). The UE-BS association process within the mobile system has been done by doing multi-objective optimization using the Gurobi software, which has taken into account parameters like path loss, predicted power consumption of BSs, and guaranteed DL & UL bit rates for UEs.
The setup of the input parameters for used mathematical models (power consumption, energy generation, energy storage) has been done in accordance with the values attached within the delivered literature positions (cited within the publications included in the Related works section of the following dataset) and adjusted to the considered study. Furthermore, the data used to model the network environment (building distribution, coverage area, base stations' locations) as well as to predict weather conditions are the real data (for the year 2022) collected by the city hall of Poznan, one of the Polish mobile operators, and weather stations placed in Poznan, respectively. The number of simulation runs performed has been equal to 10 (each run has included energy-cycle calculations for 4 seasons of the year), with the time step of a single run set to 1 hour of the day.
The results of the aforementioned investigations have been included in the attached files, which can be described as follows:
The first column denotes the date (season of the year), for which the values have been obtained. The columns from second to fifth present observed values of the State of Charge (SoC) of a battery system (in %) for a single network cell on average in a time step. Those columns are the obtained values for the RAN, in which no RES, only PVs, only WTs, and both types of RES generators have been enabled, respectively.
The first column denotes the date (season of the year), for which the values have been obtained. The second and third columns denote the number of drone base station (DBS) exchanges within the wireless system on average in a particular time step, where no RES and only PVs are enabled, respectively. The fourth and fifth columns present the conventional (fossil-fuels-based) energy consumption (in kWh) for the whole system in a specific time step, in which no RES and only PVs are engaged for all the access nodes. The sixth column is the energy savings (in kWh) related to the use of RES generators within the mobile network. Furthermore, the seventh and eighth columns represent the amount of renewable energy harvested from the solar radiation in total and the peak value of this amount observed during the entire day, respectively.
More details about the conducted studies have been described within the attached papers (Related works section). The data has been collected within the COST CA10210 INTERACT. M. Deruyck is a Post-Doctoral Fellow of the FWO-V (Research Foundation – Flanders, ref: 12Z5621N). The work (including the following dataset preparation) by A. Samorzewski and A. Kliks was realized within project no. 2021/43/B/ST7/01365 funded by the National Science Center in Poland.
KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) is one of the most popular datasets for use in mobile robotics and autonomous driving. It consists of hours of traffic scenarios recorded with a variety of sensor modalities, including high-resolution RGB, grayscale stereo cameras, and a 3D laser scanner. Despite its popularity, the dataset itself does not contain ground truth for semantic segmentation. However, various researchers have manually annotated parts of the dataset to fit their necessities. Álvarez et al. generated ground truth for 323 images from the road detection challenge with three classes: road, vertical, and sky. Zhang et al. annotated 252 (140 for training and 112 for testing) acquisitions – RGB and Velodyne scans – from the tracking challenge for ten object categories: building, sky, road, vegetation, sidewalk, car, pedestrian, cyclist, sign/pole, and fence. Ros et al. labeled 170 training images and 46 testing images (from the visual odometry challenge) with 11 classes: building, tree, sky, car, sign, road, pedestrian, fence, pole, sidewalk, and bicyclist.
The number of mobile broadband connections per 100 inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 21.1 connections (+11.49 percent). After the fifteenth consecutive increasing year, the mobile broadband penetration is estimated to reach 204.76 connections and therefore a new peak in 2029. Notably, the number of mobile broadband connections per 100 inhabitants of was continuously increasing over the past years.Mobile broadband connections include cellular connections with a download speed of at least 256 kbit/s (without satellite or fixed-wireless connections). Cellular Internet-of-Things (IoT) or machine-to-machine (M2M) connections are excluded. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of mobile broadband connections per 100 inhabitants in countries like Canada and Mexico.
The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
As of January 2024, Instagram was slightly more popular with men than women, with men accounting for 50.6 percent of the platform’s global users. Additionally, the social media app was most popular amongst younger audiences, with almost 32 percent of users aged between 18 and 24 years.
Instagram’s Global Audience
As of January 2024, Instagram was the fourth most popular social media platform globally, reaching two billion monthly active users (MAU). This number is projected to keep growing with no signs of slowing down, which is not a surprise as the global online social penetration rate across all regions is constantly increasing.
As of January 2024, the country with the largest Instagram audience was India with 362.9 million users, followed by the United States with 169.7 million users.
Who is winning over the generations?
Even though Instagram’s audience is almost twice the size of TikTok’s on a global scale, TikTok has shown itself to be a fierce competitor, particularly amongst younger audiences. TikTok was the most downloaded mobile app globally in 2022, generating 672 million downloads. As of 2022, Generation Z in the United States spent more time on TikTok than on Instagram monthly.
As of January 2024, #love was the most used hashtag on Instagram, being included in over two billion posts on the social media platform. #Instagood and #instagram were used over one billion times as of early 2024.
As of April 2024, Bahrain was the country with the highest Instagram audience reach with 95.6 percent. Kazakhstan also had a high Instagram audience penetration rate, with 90.8 percent of the population using the social network. In the United Arab Emirates, Turkey, and Brunei, the photo-sharing platform was used by more than 85 percent of each country's population.
As of April 2024, Facebook had an addressable ad audience reach 131.1 percent in Libya, followed by the United Arab Emirates with 120.5 percent and Mongolia with 116 percent. Additionally, the Philippines and Qatar had addressable ad audiences of 114.5 percent and 111.7 percent.
As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.
Instagram users
With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
Instagram features
One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
As of the second quarter of 2021, Snapchat had 293 million daily active users.
As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.
Teens and social media
As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
The global big data and business analytics (BDA) market was valued at 168.8 billion U.S. dollars in 2018 and is forecast to grow to 215.7 billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around 85 billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate 79.4 ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around 16.5 billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.
Instagram’s most popular post
As of April 2024, the most popular post on Instagram was Lionel Messi and his teammates after winning the 2022 FIFA World Cup with Argentina, posted by the account @leomessi. Messi's post, which racked up over 61 million likes within a day, knocked off the reigning post, which was 'Photo of an Egg'. Originally posted in January 2021, 'Photo of an Egg' surpassed the world’s most popular Instagram post at that time, which was a photo by Kylie Jenner’s daughter totaling 18 million likes.
After several cryptic posts published by the account, World Record Egg revealed itself to be a part of a mental health campaign aimed at the pressures of social media use.
Instagram’s most popular accounts
As of April 2024, the official Instagram account @instagram had the most followers of any account on the platform, with 672 million followers. Portuguese footballer Cristiano Ronaldo (@cristiano) was the most followed individual with 628 million followers, while Selena Gomez (@selenagomez) was the most followed woman on the platform with 429 million. Additionally, Inter Miami CF striker Lionel Messi (@leomessi) had a total of 502 million. Celebrities such as The Rock, Kylie Jenner, and Ariana Grande all had over 380 million followers each.
Instagram influencers
In the United States, the leading content category of Instagram influencers was lifestyle, with 15.25 percent of influencers creating lifestyle content in 2021. Music ranked in second place with 10.96 percent, followed by family with 8.24 percent. Having a large audience can be very lucrative: Instagram influencers in the United States, Canada and the United Kingdom with over 90,000 followers made around 1,221 US dollars per post.
Instagram around the globe
Instagram’s worldwide popularity continues to grow, and India is the leading country in terms of number of users, with over 362.9 million users as of January 2024. The United States had 169.65 million Instagram users and Brazil had 134.6 million users. The social media platform was also very popular in Indonesia and Turkey, with 100.9 and 57.1, respectively. As of January 2024, Instagram was the fourth most popular social network in the world, behind Facebook, YouTube and WhatsApp.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.