Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.
Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico
The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This competition involves advertisement data provided by BuzzCity Pte. Ltd. BuzzCity is a global mobile advertising network that has millions of consumers around the world on mobile phones and devices. In Q1 2012, over 45 billion ad banners were delivered across the BuzzCity network consisting of more than 10,000 publisher sites which reach an average of over 300 million unique users per month. The number of smartphones active on the network has also grown significantly. Smartphones now account for more than 32% phones that are served advertisements across the BuzzCity network. The "raw" data used in this competition has two types: publisher database and click database, both provided in CSV format. The publisher database records the publisher's (aka partner's) profile and comprises several fields:
publisherid - Unique identifier of a publisher. Bankaccount - Bank account associated with a publisher (may be empty) address - Mailing address of a publisher (obfuscated; may be empty) status - Label of a publisher, which can be the following: "OK" - Publishers whom BuzzCity deems as having healthy traffic (or those who slipped their detection mechanisms) "Observation" - Publishers who may have just started their traffic or their traffic statistics deviates from system wide average. BuzzCity does not have any conclusive stand with these publishers yet "Fraud" - Publishers who are deemed as fraudulent with clear proof. Buzzcity suspends their accounts and their earnings will not be paid
On the other hand, the click database records the click traffics and has several fields:
id - Unique identifier of a particular click numericip - Public IP address of a clicker/visitor deviceua - Phone model used by a clicker/visitor publisherid - Unique identifier of a publisher adscampaignid - Unique identifier of a given advertisement campaign usercountry - Country from which the surfer is clicktime - Timestamp of a given click (in YYYY-MM-DD format) publisherchannel - Publisher's channel type, which can be the following: ad - Adult sites co - Community es - Entertainment and lifestyle gd - Glamour and dating in - Information mc - Mobile content pp - Premium portal se - Search, portal, services referredurl - URL where the ad banners were clicked (obfuscated; may be empty). More details about the HTTP Referer protocol can be found in this article. Related Publication: R. J. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F.-D. Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M. N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z.-Y. Aung, W. L. Woon, W. Chen, D. Patel, and D. Berrar. (2014). Detecting click fraud in online advertising: A data mining approach, Journal of Machine Learning Research, 15, 99-140.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset gathers the most crucial SEO statistics for the year, providing an overview of the dominant trends and best practices in the field of search engine optimization. Aimed at digital marketing professionals, site owners, and SEO analysts, this collection of information serves as a guide to navigate the evolving SEO landscape with confidence and accuracy. Mode of Data Production: The statistics have been carefully selected and compiled from a variety of credible and recognized sources in the SEO industry, including research reports, web traffic data analytics, and consumer and marketing professional surveys. Each statistic was checked for reliability and relevance to current trends. Categories Included: User search behaviour: Statistics on the evolution of search modes, including voice and mobile search. Mobile Optimisation: Data on the importance of site optimization for mobile devices. Importance of Backlinks: Insights on the role of backlinks in SEO ranking and the need to prioritize quality. Content quality: Statistics highlighting the importance of relevant and engaging content for SEO. Search engine algorithms: Information on the impact of algorithm updates on SEO strategies. Usefulness of the Data: This dataset is designed to help users quickly understand current SEO dynamics and apply that knowledge in optimizing their digital marketing strategies. It provides a solid foundation for benchmarking, strategic planning, and informed decision-making in the field of SEO. Update and Accessibility: To ensure relevance and timeliness, the dataset will be regularly updated with new information and emerging trends in the SEO world.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Description for each of the variables:
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
This dataset offers a focused and invaluable window into user perceptions and experiences with applications listed on the Apple App Store. It is a vital resource for app developers, product managers, market analysts, and anyone seeking to understand the direct voice of the customer in the dynamic mobile app ecosystem.
Dataset Specifications:
Last crawled:
(This field is blank in your provided info, which means its recency is currently unknown. If this were a real product, specifying this would be critical for its value proposition.)Richness of Detail (11 Comprehensive Fields):
Each record in this dataset provides a detailed breakdown of a single App Store review, enabling multi-dimensional analysis:
Review Content:
review
: The full text of the user's written feedback, crucial for Natural Language Processing (NLP) to extract themes, sentiment, and common keywords.title
: The title given to the review by the user, often summarizing their main point.isEdited
: A boolean flag indicating whether the review has been edited by the user since its initial submission. This can be important for tracking evolving sentiment or understanding user behavior.Reviewer & Rating Information:
username
: The public username of the reviewer, allowing for analysis of engagement patterns from specific users (though not personally identifiable).rating
: The star rating (typically 1-5) given by the user, providing a quantifiable measure of satisfaction.App & Origin Context:
app_name
: The name of the application being reviewed.app_id
: A unique identifier for the application within the App Store, enabling direct linking to app details or other datasets.country
: The country of the App Store storefront where the review was left, allowing for geographic segmentation of feedback.Metadata & Timestamps:
_id
: A unique identifier for the specific review record in the dataset.crawled_at
: The timestamp indicating when this particular review record was collected by the data provider (Crawl Feeds).date
: The original date the review was posted by the user on the App Store.Expanded Use Cases & Analytical Applications:
This dataset is a goldmine for understanding what users truly think and feel about mobile applications. Here's how it can be leveraged:
Product Development & Improvement:
review
text to identify recurring technical issues, crashes, or bugs, allowing developers to prioritize fixes based on user impact.review
text to inform future product roadmap decisions and develop features users actively desire.review
field.rating
and sentiment
after new app updates to assess the effectiveness of bug fixes or new features.Market Research & Competitive Intelligence:
Marketing & App Store Optimization (ASO):
review
and title
fields to gauge overall user satisfaction, pinpoint specific positive and negative aspects, and track sentiment shifts over time.rating
trends and identify critical reviews quickly to facilitate timely responses and proactive customer engagement.Academic & Data Science Research:
review
and title
fields are excellent for training and testing NLP models for sentiment analysis, topic modeling, named entity recognition, and text summarization.rating
distribution, isEdited
status, and date
to understand user engagement and feedback cycles.country
-specific reviews to understand regional differences in app perception, feature preferences, or cultural nuances in feedback.This App Store Reviews dataset provides a direct, unfiltered conduit to understanding user needs and ultimately driving better app performance and greater user satisfaction. Its structured format and granular detail make it an indispensable asset for data-driven decision-making in the mobile app industry.
Switzerland is leading the ranking by population share with mobile internet access, recording 95.06 percent. Following closely behind is Ukraine with 95.06 percent, while Moldova is trailing the ranking with 46.83 percent, resulting in a difference of 48.23 percentage points to the ranking leader, Switzerland. The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this dataset, we present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
Column names
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License
Creative Commons Attribution 4.0 International.
Related datasets
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564
TagX Web Browsing Clickstream Data: Unveiling Digital Behavior Across North America and EU Unique Insights into Online User Behavior TagX Web Browsing clickstream Data offers an unparalleled window into the digital lives of 1 million users across North America and the European Union. This comprehensive dataset stands out in the market due to its breadth, depth, and stringent compliance with data protection regulations. What Makes Our Data Unique?
Extensive Geographic Coverage: Spanning two major markets, our data provides a holistic view of web browsing patterns in developed economies. Large User Base: With 300K active users, our dataset offers statistically significant insights across various demographics and user segments. GDPR and CCPA Compliance: We prioritize user privacy and data protection, ensuring that our data collection and processing methods adhere to the strictest regulatory standards. Real-time Updates: Our clickstream data is continuously refreshed, providing up-to-the-minute insights into evolving online trends and user behaviors. Granular Data Points: We capture a wide array of metrics, including time spent on websites, click patterns, search queries, and user journey flows.
Data Sourcing: Ethical and Transparent Our web browsing clickstream data is sourced through a network of partnered websites and applications. Users explicitly opt-in to data collection, ensuring transparency and consent. We employ advanced anonymization techniques to protect individual privacy while maintaining the integrity and value of the aggregated data. Key aspects of our data sourcing process include:
Voluntary user participation through clear opt-in mechanisms Regular audits of data collection methods to ensure ongoing compliance Collaboration with privacy experts to implement best practices in data anonymization Continuous monitoring of regulatory landscapes to adapt our processes as needed
Primary Use Cases and Verticals TagX Web Browsing clickstream Data serves a multitude of industries and use cases, including but not limited to:
Digital Marketing and Advertising:
Audience segmentation and targeting Campaign performance optimization Competitor analysis and benchmarking
E-commerce and Retail:
Customer journey mapping Product recommendation enhancements Cart abandonment analysis
Media and Entertainment:
Content consumption trends Audience engagement metrics Cross-platform user behavior analysis
Financial Services:
Risk assessment based on online behavior Fraud detection through anomaly identification Investment trend analysis
Technology and Software:
User experience optimization Feature adoption tracking Competitive intelligence
Market Research and Consulting:
Consumer behavior studies Industry trend analysis Digital transformation strategies
Integration with Broader Data Offering TagX Web Browsing clickstream Data is a cornerstone of our comprehensive digital intelligence suite. It seamlessly integrates with our other data products to provide a 360-degree view of online user behavior:
Social Media Engagement Data: Combine clickstream insights with social media interactions for a holistic understanding of digital footprints. Mobile App Usage Data: Cross-reference web browsing patterns with mobile app usage to map the complete digital journey. Purchase Intent Signals: Enrich clickstream data with purchase intent indicators to power predictive analytics and targeted marketing efforts. Demographic Overlays: Enhance web browsing data with demographic information for more precise audience segmentation and targeting.
By leveraging these complementary datasets, businesses can unlock deeper insights and drive more impactful strategies across their digital initiatives. Data Quality and Scale We pride ourselves on delivering high-quality, reliable data at scale:
Rigorous Data Cleaning: Advanced algorithms filter out bot traffic, VPNs, and other non-human interactions. Regular Quality Checks: Our data science team conducts ongoing audits to ensure data accuracy and consistency. Scalable Infrastructure: Our robust data processing pipeline can handle billions of daily events, ensuring comprehensive coverage. Historical Data Availability: Access up to 24 months of historical data for trend analysis and longitudinal studies. Customizable Data Feeds: Tailor the data delivery to your specific needs, from raw clickstream events to aggregated insights.
Empowering Data-Driven Decision Making In today's digital-first world, understanding online user behavior is crucial for businesses across all sectors. TagX Web Browsing clickstream Data empowers organizations to make informed decisions, optimize their digital strategies, and stay ahead of the competition. Whether you're a marketer looking to refine your targeting, a product manager seeking to enhance user experience, or a researcher exploring digital trends, our cli...
Success.ai offers a comprehensive, enterprise-ready B2B leads data solution, ideal for businesses seeking access to over 150 million verified employee profiles and 170 million work emails. Our data empowers organizations across industries to target key decision-makers, optimize recruitment, and fuel B2B marketing efforts. Whether you're looking for UK B2B data, B2B marketing data, or global B2B contact data, Success.ai provides the insights you need with pinpoint accuracy.
Tailored for B2B Sales, Marketing, Recruitment and more: Our B2B contact data and B2B email data solutions are designed to enhance your lead generation, sales, and recruitment efforts. Build hyper-targeted lists based on job title, industry, seniority, and geographic location. Whether you’re reaching mid-level professionals or C-suite executives, Success.ai delivers the data you need to connect with the right people.
API Features:
Key Categories Served: B2B sales leads – Identify decision-makers in key industries, B2B marketing data – Target professionals for your marketing campaigns, Recruitment data – Source top talent efficiently and reduce hiring times, CRM enrichment – Update and enhance your CRM with verified, updated data, Global reach – Coverage across 195 countries, including the United States, United Kingdom, Germany, India, Singapore, and more.
Global Coverage with Real-Time Accuracy: Success.ai’s dataset spans a wide range of industries such as technology, finance, healthcare, and manufacturing. With continuous real-time updates, your team can rely on the most accurate data available: 150M+ Employee Profiles: Access professional profiles worldwide with insights including full name, job title, seniority, and industry. 170M Verified Work Emails: Reach decision-makers directly with verified work emails, available across industries and geographies, including Singapore and UK B2B data. GDPR-Compliant: Our data is fully compliant with GDPR and other global privacy regulations, ensuring safe and legal use of B2B marketing data.
Key Data Points for Every Employee Profile: Every profile in Success.ai’s database includes over 20 critical data points, providing the information needed to power B2B sales and marketing campaigns: Full Name, Job Title, Company, Work Email, Location, Phone Number, LinkedIn Profile, Experience, Education, Technographic Data, Languages, Certifications, Industry, Publications & Awards.
Use Cases Across Industries: Success.ai’s B2B data solution is incredibly versatile and can support various enterprise use cases, including: B2B Marketing Campaigns: Reach high-value professionals in industries such as technology, finance, and healthcare. Enterprise Sales Outreach: Build targeted B2B contact lists to improve sales efforts and increase conversions. Talent Acquisition: Accelerate hiring by sourcing top talent with accurate and updated employee data, filtered by job title, industry, and location. Market Research: Gain insights into employment trends and company profiles to enrich market research. CRM Data Enrichment: Ensure your CRM stays accurate by integrating updated B2B contact data. Event Targeting: Create lists for webinars, conferences, and product launches by targeting professionals in key industries.
Use Cases for Success.ai's Contact Data - Targeted B2B Marketing: Create precise campaigns by targeting key professionals in industries like tech and finance. - Sales Outreach: Build focused sales lists of decision-makers and C-suite executives for faster deal cycles. - Recruiting Top Talent: Easily find and hire qualified professionals with updated employee profiles. - CRM Enrichment: Keep your CRM current with verified, accurate employee data. - Event Targeting: Create attendee lists for events by targeting relevant professionals in key sectors. - Market Research: Gain insights into employment trends and company profiles for better business decisions. - Executive Search: Source senior executives and leaders for headhunting and recruitment. - Partnership Building: Find the right companies and key people to develop strategic partnerships.
Why Choose Success.ai’s Employee Data? Success.ai is the top choice for enterprises looking for comprehensive and affordable B2B data solutions. Here’s why: Unmatched Accuracy: Our AI-powered validation process ensures 99% accuracy across all data points, resulting in higher engagement and fewer bounces. Global Scale: With 150M+ employee profiles and 170M veri...
By Andy Kriebel [source]
This dataset contains the average price of 1GB of mobile data by country. It includes data for over 150 countries, providing a valuable resource for anyone interested in global mobile data pricing trends. The data is sourced from Visual Capitalist, and was last updated in 2021
This dataset contains the average price of 1GB of mobile data by country as of April 2021. The data is sourced from Visual Capitalist.
To use this dataset, you can simply download it and then open it in your preferred spreadsheet software. The dataset is organized by rank, with the most expensive countries being listed first. Each row also lists the country's name and its corresponding average price for 1GB of mobile data.
If you want to compare the cost of mobile data across different countries, this dataset provides a useful starting point. You can also use it to track how prices have changed over time by comparing against previous editions of the dataset
1. To compare the cost of living in different countries.
2. To find out which countries have the most expensive mobile data plans.
**3. To see how the cost of mobile data has changed over time
License
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Cost of 1GB of Data.csv | Column name | Description | |:---------------------------|:---------------------------------------------------------------------------| | Rank | The rank of the country based on the cost of 1GB of mobile data. (Numeric) | | Country | The country where the data was collected. (String) | | Avg Price of 1GB (USD) | The average price of 1GB of mobile data in the country, in USD. (Numeric) |
If you use this dataset in your research, please credit Andy Kriebel.
Intending to cover the existing gap regarding behavioral datasets modelling interactions of users with individual a multiple devices in Smart Office to later authenticate them continuously, we publish the following collection of datasets, which has been generated after having five users interacting for 60 days with their personal computer and mobile devices. Below you can find a brief description of each dataset.Dataset 1 (2.3 GB). This dataset contains 92975 vectors of features (8096 per vector) that model the interactions of the five users with their personal computers. Each vector contains aggregated data about keyboard and mouse activity, as well as application usage statistics. More info about features meaning can be found in the readme file. Originally, the number of features of this dataset was 24 065 but after filtering the constant features, this number was reduced to 8096. There was a high number of constant features to 0 since each possible digraph (two keys combination) was considered when collecting the data. However, there are many unusual digraphs that the users never introduced in their computers, so these features were deleted in the uploaded dataset.Dataset 2 (8.9 MB). This dataset contains 61918 vectors of features (15 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about application usage statistics. More info about features meaning can be found in the readme file.Dataset 3 (28.9 MB). This dataset contains 133590vectors of features (42 per vector)that model the interactions of the five users with their mobile devices. Each vector contains aggregated data about the gyroscope and Accelerometer sensors.More info about features meaning can be found in the readme file.Dataset 4 (162.4 MB). This dataset contains 145465vectors of features (241 per vector)that model the interactions of the five users with both personal computers and mobile devices. Each vector contains the aggregation of the most relevant features of both devices. More info about features meaning can be found in the readme file.Dataset 5 (878.7 KB). This dataset is composed of 7 datasets. Each one of them contains an aggregation of feature vectors generated from the active/inactive intervals of personal computers and mobile devices by considering different time windows ranging from 1h to 24h.1h: 4074 vectors2h: 2149 vectors3h: 1470 vectors4h: 1133 vectors6h: 770 vectors12h: 440 vectors24h: 229 vectors
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:
Context:
Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.
Inspiration:
The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.
Dataset Information:
The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:
Use Cases:
Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information extracted from the 56 papers which potentially discuss on Dynamic Testing Techniques of Non-Functional Requirements on Mobile Applications. From this information, it is possible to identify, evaluate, and collect available relevant research works about non-functional requirements testing on mobile applications. Moreover, such information is helpful to assess: trends, purpose, perspective, tool support, and industry collaboration. It contains two main folders: (1) Data Extraction Stage; and (2) Data Analysis Stage. The folder "Data Extraction Stage" contains the spreadsheet with the extracted data from the 56 selected studies. On the other hand, the folder "Data Analysis Stage" contains the all figures, and python and Matlab scripts used to generate the graphs and figures. Moreover, we included a pdf file with all search string applied for each search engine.
This is the dataset for the study titled "Hotspots and Global Trends of Nursing Research on Mobile Applications in Nursing: A Bibliometric Analysis"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
The 802.11 standard includes several management features and corresponding frame types. One of them are probe requests (PR). They are sent by mobile devices in the unassociated state to search the nearby area for existing wireless networks. The frame part of PRs consists of variable length fields called information elements (IE). IE fields represent the capabilities of a mobile device, such as data rates.
The dataset includes PRs collected in a controlled rural environment and in a semi-controlled indoor environment under different measurement scenarios.
It can be used for various use cases, e.g., analysing MAC randomization, determining the number of people in a given location at a given time or in different time periods, analysing trends in population movement (streets, shopping malls, etc.) in different time periods, etc.
Measurement setup
The system for collecting PRs consists of a Raspberry Pi 4 (RPi) with an additional WiFi dongle to capture Wi-Fi signal traffic in monitoring mode. Passive PR monitoring is performed by listening to 802.11 traffic and filtering out PR packets on a single WiFi channel.
The following information about each PR received is collected: MAC address, Supported data rates, extended supported rates, HT capabilities, extended capabilities, data under extended tag and vendor specific tag, interworking, VHT capabilities, RSSI, SSID and timestamp when PR was received.
The collected data was forwarded to a remote database via a secure VPN connection. A Python script was written using the Pyshark package for data collection, preprocessing and transmission.
Data preprocessing
The gateway collects PRs for each consecutive predefined scan interval (10 seconds). During this time interval, the data are preprocessed before being transmitted to the database.
For each detected PR in the scan interval, IEs fields are saved in the following JSON structure:
PR_IE_data =
{
'DATA_RTS': {'SUPP': DATA_supp , 'EXT': DATA_ext},
'HT_CAP': DATA_htcap,
'EXT_CAP': {'length': DATA_len, 'data': DATA_extcap},
'VHT_CAP': DATA_vhtcap,
'INTERWORKING': DATA_inter,
'EXT_TAG': {'ID_1': DATA_1_ext, 'ID_2': DATA_2_ext ...},
'VENDOR_SPEC': {VENDOR_1:{
'ID_1': DATA_1_vendor1,
'ID_2': DATA_2_vendor1
...},
VENDOR_2:{
'ID_1': DATA_1_vendor2,
'ID_2': DATA_2_vendor2
...}
...}
}
Supported data rates and extended supported rates are represented as arrays of values that encode information about the rates supported by a mobile device. The rest of the IEs data is represented in hexadecimal format. Vendor Specific Tag is structured differently than the other IEs. This field can contain multiple vendor IDs with multiple data IDs with corresponding data. Similarly, the extended tag can contain multiple data IDs with corresponding data.
Missing IE fields in the captured PR are not included in PR_IE_DATA.
When a new MAC address is detected in the current scan time interval, the data from PR is stored in the following structure:
{'MAC': MAC_address, 'SSIDs': [ SSID ], 'PROBE_REQs': [PR_data] },
where PR_data is structured as follows:
{
'TIME': [ DATA_time ],
'RSSI': [ DATA_rssi ],
'DATA': PR_IE_data
}.
This data structure allows storing only TOA and RSSI for all PRs originating from the same MAC address and containing the same PR_IE_data. All SSIDs from the same MAC address are also stored.
The data of the newly detected PR is compared with the already stored data of the same MAC in the current scan time interval.
If identical PR's IE data from the same MAC address is already stored, then only data for the keys TIME and RSSI are appended.
If no identical PR's IE data has yet been received from the same MAC address, then PR_data structure of the new PR for that MAC address is appended to PROBE_REQs key.
The preprocessing procedure is shown in Figure ./Figures/Preprocessing_procedure.png
At the end of each scan time interval, all processed data is sent to the database along with additional metadata about the collected data e.g. wireless gateway serial number and scan start and end timestamps. For an example of a single PR captured, see the ./Single_PR_capture_example.json file.
Environments description
We performed measurements in a controlled rural outdoor environment and in a semi-controlled indoor environment of the Jozef Stefan Institute.
See the Excel spreadsheet Measurement_informations.xlsx for a list of mobile devices tested.
Indoor environment
We used 3 RPi's for the acquisition of PRs in the Jozef Stefan Institute. They were placed indoors in the hallways as shown in the ./Figures/RPi_locations_JSI.png. Measurements were performed on weekend to minimize additional uncontrolled traffic from users' mobile devices. While there is some overlap in WiFi coverage between the devices at the location 2 and 3, the device at location 1 has no overlap with the other two devices.
Rural environment outdoors
The three RPi's used to collect PRs were placed at three different locations with non-overlapping WiFi coverage, as shown in ./Figures/RPi_locations_rural_env.png. Before starting the measurement campaign, all measured devices were turned off and the environment was checked for active WiFi devices. We did not detect any unknown active devices sending WiFi packets in the RPi's coverage area, so the deployment can be considered fully controlled.
All known WiFi enabled devices that were used to collect and send data to the database used a global MAC address, so they can be easily excluded in the preprocessing phase. MAC addresses of these devices can be found in the ./Measurement_informations.xlsx spreadsheet.
Note: The Huawei P20 device with ID 4.3 was not included in the test in this environment.
Scenarios description
We performed three different scenarios of measurements.
Individual device measurements
For each device, we collected PRs for one minute with the screen on, followed by PRs collected for one minute with the screen off. In the indoor environment the WiFi interfaces of the other devices not being tested were disabled. In rural environment other devices were turned off. Start and end timestamps of the recorded data for each device can be found in the ./Measurement_informations.xlsx spreadsheet under the Indoor environment of Jozef Stefan Institute sheet and the Rural environment sheet.
Three groups test
In this measurement scenario, the devices were divided into three groups. The first group contained devices from different manufacturers. The second group contained devices from only one manufacturer (Samsung). Half of the third group consisted of devices from the same manufacturer (Huawei), and the other half of devices from different manufacturers. The distribution of devices among the groups can be found in the ./Measurement_informations.xlsx spreadsheet.
The same data collection procedure was used for all three groups. Data for each group were collected in both environments at three different RPis locations, as shown in ./Figures/RPi_locations_JSI.png and ./Figures/RPi_locations_rural_env.png.
At each location, PRs were collected from each group for 10 minutes with the screen on. Then all three groups switched locations and the process was repeated. Thus, the dataset contains measurements from all three RPi locations of all three groups of devices in both measurement environments. The group movements and the timestamps for the start and end of the collection of PRs at each loacation can be found in spreadsheet ./Measurement_informations.xlsx.
One group test
In the last measurement scenario, all devices were grouped together. In rural evironement we first collected PRs for 10 minutes while the screen was on, and then for another 10 minutes while the screen was off. In indoor environment data were collected at first location with screens on for 10 minutes. Then all devices were moved to the location of the next RPi and PRs were collected for 5 minutes with the screen on and then for another 5 minutes with the screen off.
Folder structure
The root directory contains two files in JSON format for each of the environments where the measurements took place (Data_indoor_environment.json and Data_rural_environment.json). Both files contain collected PRs for the entire day that the measurements were taken (12:00 AM to 12:00 PM) to get a sense of the behaviour of the unknown devices in each environment. The spreadsheet ./Measurement_informations.xlsx. contains three sheets. Devices description contains general information about the tested devices, RPis, and the assigned group for each device. The sheets Indoor environment of Jozef Stefan Institute and Rural environment contain the corresponding timestamps for the start and end of each measurement scenario. For the scenario where the devices were divided into groups, additional information about the movements between locations is included. The location names are based on the RPi gateway ID and may differ from those on the figures showing the
Premium B2C Consumer Database - 269+ Million US Records
Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.
Core Database Statistics
Consumer Records: Over 269 million
Email Addresses: Over 160 million (verified and deliverable)
Phone Numbers: Over 76 million (mobile and landline)
Mailing Addresses: Over 116,000,000 (NCOA processed)
Geographic Coverage: Complete US (all 50 states)
Compliance Status: CCPA compliant with consent management
Targeting Categories Available
Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)
Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options
Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics
Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting
Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting
Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors
Multi-Channel Campaign Applications
Deploy across all major marketing channels:
Email marketing and automation
Social media advertising
Search and display advertising (Google, YouTube)
Direct mail and print campaigns
Telemarketing and SMS campaigns
Programmatic advertising platforms
Data Quality & Sources
Our consumer data aggregates from multiple verified sources:
Public records and government databases
Opt-in subscription services and registrations
Purchase transaction data from retail partners
Survey participation and research studies
Online behavioral data (privacy compliant)
Technical Delivery Options
File Formats: CSV, Excel, JSON, XML formats available
Delivery Methods: Secure FTP, API integration, direct download
Processing: Real-time NCOA, email validation, phone verification
Custom Selections: 1,000+ selectable demographic and behavioral attributes
Minimum Orders: Flexible based on targeting complexity
Unique Value Propositions
Dual Spouse Targeting: Reach both household decision-makers for maximum impact
Cross-Platform Integration: Seamless deployment to major ad platforms
Real-Time Updates: Monthly data refreshes ensure maximum accuracy
Advanced Segmentation: Combine multiple targeting criteria for precision campaigns
Compliance Management: Built-in opt-out and suppression list management
Ideal Customer Profiles
E-commerce retailers seeking customer acquisition
Financial services companies targeting specific demographics
Healthcare organizations with compliant marketing needs
Automotive dealers and service providers
Home improvement and real estate professionals
Insurance companies and agents
Subscription services and SaaS providers
Performance Optimization Features
Lookalike Modeling: Create audiences similar to your best customers
Predictive Scoring: Identify high-value prospects using AI algorithms
Campaign Attribution: Track performance across multiple touchpoints
A/B Testing Support: Split audiences for campaign optimization
Suppression Management: Automatic opt-out and DNC compliance
Pricing & Volume Options
Flexible pricing structures accommodate businesses of all sizes:
Pay-per-record for small campaigns
Volume discounts for large deployments
Subscription models for ongoing campaigns
Custom enterprise pricing for high-volume users
Data Compliance & Privacy
VIA.tools maintains industry-leading compliance standards:
CCPA (California Consumer Privacy Act) compliant
CAN-SPAM Act adherence for email marketing
TCPA compliance for phone and SMS campaigns
Regular privacy audits and data governance reviews
Transparent opt-out and data deletion processes
Getting Started
Our data specialists work with you to:
Define your target audience criteria
Recommend optimal data selections
Provide sample data for testing
Configure delivery methods and formats
Implement ongoing campaign optimization
Why We Lead the Industry
With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.
Contact our team to discuss your specific ta...
The World Telecommunication/ICT Indicators database contains time series data for more than 180 telecommunication/ICT (Information and Communication Technologies) statistics. It covers fixed-telephone networks, mobile-cellular telephone subscriptions, quality of service, Internet (including fixed- and mobile-broadband subscription data), traffic, staff, prices, revenue, investment and statistics on ICT access and use by households and individuals. Selected demographic, macroeconomic and broadcasting statistics are also included. The data is for the years 1960, 1965, 1970 and annually from 1975 to 2017. The WTI Database also includes: Economy yearbook pages featuring in the Yearbook of Statistics. These pages show data in economy tables allowing readers to view the evolution of telecommunication services by economy. Statistics are provided for the ten-year period 2007-2017. The latest (2017) data on ICT access and use by households and individuals. Data are presented in tables and broken down by socio-demographic variables, such as age, sex, income and education level etc. Please note: The World Telecommunication/ICT Indicators database is a relational database which must be used with the associated Software Application. In order to search and extract data from the Data file, users will need to download and install the Application and the Data file to the same folder on their personal computers. The database must be installed by first launching the executable (ending in “.exe”) file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Feature statistics of the available datasets. Features are mostly self-declared and their availability is shown in percentage of all users in each dataset. The location refers to city for iWiW and one of the 188 Slovakian regions for Pokec. Features marked with ‘cat’ are categorical variables and those marked with ‘num’ are numeric variables.
Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.
Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico
The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.