5 datasets found
  1. Global number of internet users 2005-2024

    • statista.com
    Updated May 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global number of internet users 2005-2024 [Dataset]. https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of 2024, the estimated number of internet users worldwide was 5.5 billion, up from 5.3 billion in the previous year. This share represents 68 percent of the global population. Internet access around the world Easier access to computers, the modernization of countries worldwide, and increased utilization of smartphones have allowed people to use the internet more frequently and conveniently. However, internet penetration often pertains to the current state of development regarding communications networks. As of January 2023, there were approximately 1.05 billion total internet users in China and 692 million total internet users in the United States. Online activities Social networking is one of the most popular online activities worldwide, and Facebook is the most popular online network based on active usage. As of the fourth quarter of 2023, there were over 3.07 billion monthly active Facebook users, accounting for well more than half of the internet users worldwide. Connecting with family and friends, expressing opinions, entertainment, and online shopping are amongst the most popular reasons for internet usage.

  2. Mobile App Store ( 7200 apps)

    • kaggle.com
    zip
    Updated Jun 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ramanathan Perumal (2018). Mobile App Store ( 7200 apps) [Dataset]. https://www.kaggle.com/ramamet4/app-store-apple-data-set-10k-apps
    Explore at:
    zip(5905027 bytes)Available download formats
    Dataset updated
    Jun 10, 2018
    Authors
    Ramanathan Perumal
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Description

    Mobile App Statistics (Apple iOS app store)

    The ever-changing mobile landscape is a challenging space to navigate. . The percentage of mobile over desktop is only increasing. Android holds about 53.2% of the smartphone market, while iOS is 43%. To get more people to download your app, you need to make sure they can easily find your app. Mobile app analytics is a great way to understand the existing strategy to drive growth and retention of future user.

    With million of apps around nowadays, the following data set has become very key to getting top trending apps in iOS app store. This data set contains more than 7000 Apple iOS mobile application details. The data was extracted from the iTunes Search API at the Apple Inc website. R and linux web scraping tools were used for this study.

    Interactive full Shiny app can be seen here( https://multiscal.shinyapps.io/appStore/)

    Data collection date (from API); July 2017

    Dimension of the data set; 7197 rows and 16 columns

    Content:

    appleStore.csv

    1. "id" : App ID

    2. "track_name": App Name

    3. "size_bytes": Size (in Bytes)

    4. "currency": Currency Type

    5. "price": Price amount

    6. "rating_count_tot": User Rating counts (for all version)

    7. "rating_count_ver": User Rating counts (for current version)

    8. "user_rating" : Average User Rating value (for all version)

    9. "user_rating_ver": Average User Rating value (for current version)

    10. "ver" : Latest version code

    11. "cont_rating": Content Rating

    12. "prime_genre": Primary Genre

    13. "sup_devices.num": Number of supporting devices

    14. "ipadSc_urls.num": Number of screenshots showed for display

    15. "lang.num": Number of supported languages

    16. "vpp_lic": Vpp Device Based Licensing Enabled

    appleStore_description.csv

    1. id : App ID
    2. track_name: Application name
    3. size_bytes: Memory size (in Bytes)
    4. app_desc: Application description

    Acknowledgements

    The data was extracted from the iTunes Search API at the Apple Inc website. R and linux web scraping tools were used for this study.

    Inspiration

    1. How does the App details contribute the user ratings?
    2. Try to compare app statistics for different groups?

    Reference: R package From github, with devtools::install_github("ramamet/applestoreR")

    Licence

    Copyright (c) 2018 Ramanathan Perumal

  3. Household Survey on Information and Communications Technology 2023 - West...

    • pcbs.gov.ps
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2025). Household Survey on Information and Communications Technology 2023 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/733
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2023 - 2024
    Area covered
    Gaza, West Bank, Gaza Strip
    Description

    Abstract

    The Palestinian society's access to information and communication technology tools is one of the main inputs to achieve social development and economic change to the status of Palestinian society; on the basis of its impact on the revolution of information and communications technology that has become a feature of this era. Therefore, and within the scope of the efforts exerted by the Palestinian Central Bureau of Statistics in providing official Palestinian statistics on various areas of life for the Palestinian community, PCBS implemented the household survey for information and communications technology for the year 2023. The main objective of this report is to present the trends of accessing and using information and communication technology by households and individuals in Palestine, and enriching the information and communications technology database with indicators that meet national needs and are in line with international recommendations.

    Geographic coverage

    Palestine, West Bank, Gaza strip

    Analysis unit

    Household, Individual

    Universe

    All Palestinian households and individuals (10 years and above) whose usual place of residence in 2023 was in the state of Palestine.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The sampling frame consists of master sample which were enumerated in the 2017 census. Each enumeration area consists of buildings and housing units with an average of about 150 households. These enumeration areas are used as primary sampling units (PSUs) in the first stage of the sampling selection.

    Sample Size The sample size is 8,040 households.

    Sampling Design The sample is three stages stratified cluster (pps) sample. The design comprised three stages: Stage (1): Selection a stratified sample of 536 enumeration areas with (pps) method. Stage (2): Selection a stratified random sample of 15 households from each enumeration area selected in the first stage. Stage (3): Selection one person of the (10 years and above) age group in a random method by using KISH TABLES.

    Sample Strata The population was divided by: 1- Governorate (16 governorates, where Jerusalem was considered as two statistical areas) 2- Type of Locality (urban, rural, camps).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaire The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.

    Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.

    Section III: Data on Individuals (10 years and above) about computer use, access to the Internet, possession of a mobile phone, information threats, and E-commerce.

    Cleaning operations

    Field Editing and Supervising

    • Data collection and coordination were carried out in the field according to the pre-prepared plan, where instructions, models and tools were available for fieldwork. • Audit process on the PC-Tablet is through the establishment of all automated rules and the office on the program to cover all the required controls according to the criteria specified. • For the privacy of Jerusalem (J1) data were collected in a paper questionnaire. Then the supervisor verifies the questionnaire in a formal and technical manner according to the pre-prepared audit rules. • Fieldwork visits was carried out by the project coordinator, supervisors and project management to check edited questionnaire and the performance of fieldworkers.

    Data Processing

    Programming Consistency Check The data collection program was designed in accordance with the questionnaire's design and its skips. The program was examined more than once before the conducting of the training course by the project management where the notes and modifications were reflected on the program by the Data Processing Department after ensuring that it was free of errors before going to the field.

    Using PC-tablet devices reduced data processing stages, and fieldworkers collected data and sent it directly to server, and project management withdraw the data at any time.

    In order to work in parallel with Jerusalem (J1), a data entry program was developed using the same technology and using the same database used for PC-tablet devices.

    Data Cleaning After the completion of data entry and audit phase, data is cleaned by conducting internal tests for the outlier answers and comprehensive audit rules through using SPSS program to extract and modify errors and discrepancies to prepare clean and accurate data ready for tabulation and publishing.

    Response rate

    The response rate reached 83.7%.

    Sampling error estimates

    Sampling Errors Data of this survey affected by sampling errors due to use of the sample and not a complete enumeration. Therefore, certain differences are expected in comparison with the real values obtained through censuses. Variance were calculated for the most important indicators, there is no problem to disseminate results at the national level and at the level of the West Bank and Gaza Strip.

    Non-Sampling Errors Non-Sampling errors are possible at all stages of the project, during data collection or processing. These are referred to non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, as well as practical and theoretical training during the training course.

    The implementation of the survey encountered non-response where the case (household was not present at home) during the fieldwork visit become the high percentage of the non-response cases. The total non-response rate reached 16.3%.

  4. Bot_IoT

    • kaggle.com
    zip
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vignesh Venkateswaran (2023). Bot_IoT [Dataset]. https://www.kaggle.com/datasets/vigneshvenkateswaran/bot-iot
    Explore at:
    zip(1257092644 bytes)Available download formats
    Dataset updated
    Feb 28, 2023
    Authors
    Vignesh Venkateswaran
    Description

    INFO ABOUT THE BOT-IOT DATASET, NOTE: only the csv files stated in the description are used

    The BoT-IoT dataset can be downloaded from HERE. You can also use our new datasets: the TON_IoT and UNSW-NB15.

    --------------------------------------------------------------------------

    The BoT-IoT dataset was created by designing a realistic network environment in the Cyber Range Lab of UNSW Canberra. The network environment incorporated a combination of normal and botnet traffic. The dataset’s source files are provided in different formats, including the original pcap files, the generated argus files and csv files. The files were separated, based on attack category and subcategory, to better assist in labeling process.

    The captured pcap files are 69.3 GB in size, with more than 72.000.000 records. The extracted flow traffic, in csv format is 16.7 GB in size. The dataset includes DDoS, DoS, OS and Service Scan, Keylogging and Data exfiltration attacks, with the DDoS and DoS attacks further organized, based on the protocol used.

    To ease the handling of the dataset, we extracted 5% of the original dataset via the use of select MySQL queries. The extracted 5%, is comprised of 4 files of approximately 1.07 GB total size, and about 3 million records.

    --------------------------------------------------------------------------

    Free use of the Bot-IoT dataset for academic research purposes is hereby granted in perpetuity. Use for commercial purposes should be agreed by the authors. The authors have asserted their rights under the Copyright. To whom intent the use of the Bot-IoT dataset, the authors have to cite the following papers that has the dataset’s details: .

    Koroniotis, Nickolaos, Nour Moustafa, Elena Sitnikova, and Benjamin Turnbull. "Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset." Future Generation Computer Systems 100 (2019): 779-796. Public Access Here.

    Koroniotis, Nickolaos, Nour Moustafa, Elena Sitnikova, and Jill Slay. "Towards developing network forensic mechanism for botnet activities in the iot based on machine learning techniques." In International Conference on Mobile Networks and Management, pp. 30-44. Springer, Cham, 2017.

    Koroniotis, Nickolaos, Nour Moustafa, and Elena Sitnikova. "A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework." Future Generation Computer Systems 110 (2020): 91-106.

    Koroniotis, Nickolaos, and Nour Moustafa. "Enhancing network forensics with particle swarm and deep learning: The particle deep framework." arXiv preprint arXiv:2005.00722 (2020).

    Koroniotis, Nickolaos, Nour Moustafa, Francesco Schiliro, Praveen Gauravaram, and Helge Janicke. "A Holistic Review of Cybersecurity and Reliability Perspectives in Smart Airports." IEEE Access (2020).

    Koroniotis, Nickolaos. "Designing an effective network forensic framework for the investigation of botnets in the Internet of Things." PhD diss., The University of New South Wales Australia, 2020.

    --------------------------------------------------------------------------

  5. Robot@Home2, a robotic dataset of home environments

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    application/gzip
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gregorio Ambrosio-Cestero; José Raul Ruiz-Sarmiento; Javier González-Jiménez; Gregorio Ambrosio-Cestero; José Raul Ruiz-Sarmiento; Javier González-Jiménez (2024). Robot@Home2, a robotic dataset of home environments [Dataset]. http://doi.org/10.5281/zenodo.10928908
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gregorio Ambrosio-Cestero; José Raul Ruiz-Sarmiento; Javier González-Jiménez; Gregorio Ambrosio-Cestero; José Raul Ruiz-Sarmiento; Javier González-Jiménez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Robot-at-Home dataset (Robot@Home, paper here) is a collection of raw and processed data from five domestic settings compiled by a mobile robot equipped with 4 RGB-D cameras and a 2D laser scanner. Its main purpose is to serve as a testbed for semantic mapping algorithms through the categorization of objects and/or rooms.

    This dataset is unique in three aspects:

    • The provided data were captured with a rig of 4 RGB-D sensors with an overall field of view of 180°H. and 58°V., and with a 2D laser scanner.
    • It comprises diverse and numerous data: sequences of RGB-D images and laser scans from the rooms of five apartments (87,000+ observations were collected), topological information about the connectivity of these rooms, and 3D reconstructions and 2D geometric maps of the visited rooms.
    • The provided ground truth is dense, including per-point annotations of the categories of the objects and rooms appearing in the reconstructed scenarios, and per-pixel annotations of each RGB-D image within the recorded sequences

    During the data collection, a total of 36 rooms were completely inspected, so the dataset is rich in contextual information of objects and rooms. This is a valuable feature, missing in most of the state-of-the-art datasets, which can be exploited by, for instance, semantic mapping systems that leverage relationships like pillows are usually on beds or ovens are not in bathrooms.

    Robot@Home2

    Robot@Home2, is an enhanced version aimed at improving usability and functionality for developing and testing mobile robotics and computer vision algorithms. It consists of three main components. Firstly, a relational database that states the contextual information and data links, compatible with Standard Query Language. Secondly,a Python package for managing the database, including downloading, querying, and interfacing functions. Finally, learning resources in the form of Jupyter notebooks, runnable locally or on the Google Colab platform, enabling users to explore the dataset without local installations. These freely available tools are expected to enhance the ease of exploiting the Robot@Home dataset and accelerate research in computer vision and robotics.

    If you use Robot@Home2, please cite the following paper:

    Gregorio Ambrosio-Cestero, Jose-Raul Ruiz-Sarmiento, Javier Gonzalez-Jimenez, The Robot@Home2 dataset: A new release with improved usability tools, in SoftwareX, Volume 23, 2023, 101490, ISSN 2352-7110, https://doi.org/10.1016/j.softx.2023.101490.

    @article{ambrosio2023robotathome2,
    title = {The Robot@Home2 dataset: A new release with improved usability tools},
    author = {Gregorio Ambrosio-Cestero and Jose-Raul Ruiz-Sarmiento and Javier Gonzalez-Jimenez},
    journal = {SoftwareX},
    volume = {23},
    pages = {101490},
    year = {2023},
    issn = {2352-7110},
    doi = {https://doi.org/10.1016/j.softx.2023.101490},
    url = {https://www.sciencedirect.com/science/article/pii/S2352711023001863},
    keywords = {Dataset, Mobile robotics, Relational database, Python, Jupyter, Google Colab}
    }

    Version history
    v1.0.1 Fixed minor bugs.
    v1.0.2 Fixed some inconsistencies in some directory names. Fixes were necessary to automate the generation of the next version.
    v2.0.0 SQL based dataset. Robot@Home v1.0.2 has been packed into a sqlite database along with RGB-D and scene files which have been assembled into a hierarchical structured directory free of redundancies. Path tables are also provided to reference files in both v1.0.2 and v2.0.0 directory hierarchies. This version has been automatically generated from version 1.0.2 through the toolbox.
    v2.0.1 A forgotten foreign key pair have been added.
    v.2.0.2 The views have been consolidated as tables which allows a considerable improvement in access time.
    v.2.0.3 The previous version does not include the database. In this version the database has been uploaded.
    v.2.1.0 Depth images have been updated to 16-bit. Additionally, both the RGB images and the depth images are oriented in the original camera format, i.e. landscape.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Global number of internet users 2005-2024 [Dataset]. https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
Organization logo

Global number of internet users 2005-2024

Explore at:
Dataset updated
May 6, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

As of 2024, the estimated number of internet users worldwide was 5.5 billion, up from 5.3 billion in the previous year. This share represents 68 percent of the global population. Internet access around the world Easier access to computers, the modernization of countries worldwide, and increased utilization of smartphones have allowed people to use the internet more frequently and conveniently. However, internet penetration often pertains to the current state of development regarding communications networks. As of January 2023, there were approximately 1.05 billion total internet users in China and 692 million total internet users in the United States. Online activities Social networking is one of the most popular online activities worldwide, and Facebook is the most popular online network based on active usage. As of the fourth quarter of 2023, there were over 3.07 billion monthly active Facebook users, accounting for well more than half of the internet users worldwide. Connecting with family and friends, expressing opinions, entertainment, and online shopping are amongst the most popular reasons for internet usage.

Search
Clear search
Close search
Google apps
Main menu