The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.
The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.
Ziel dieser Studie war es, den Einfluss verschiedener Anreizsysteme auf die Bereitschaft zur Teilnahme an der passiven mobilen Datenerfassung unter deutschen Smartphone-Besitzern experimentell zu messen. Die Daten stammen aus einer Webumfrage unter deutschen Smartphone-Nutzern ab 18 Jahren, die aus einem deutschen, nicht wahrscheinlichen Online-Panel rekrutiert wurden. Im Dezember 2017 beantworteten 1.214 Teilnehmer einen Fragebogen zu den Themen Smartphone-Nutzung und -Fähigkeiten, Datenschutz und Sicherheit, allgemeine Einstellungen gegenüber der Umfrageforschung und Forschungseinrichtungen. Darüber hinaus enthielt der Fragebogen ein Experiment zur Bereitschaft, an der mobilen Datenerhebung unter verschiedenen Anreizbedingungen teilzunehmen. Themen: Besitz von Smartphone, Handy, Desktop- oder Laptop-Computer, Tablet-Computer und/oder E-Book-Reader; Art des Smartphones; Bereitschaft zur Teilnahme an der mobilen Datenerfassung unter verschiedenen Anreizbedingungen; Wahrscheinlichkeit des Herunterladens der App zur Teilnahme an dieser Forschungsstudie; Befragter möchte lieber an der Studie teilnehmen, wenn er 100 Euro erhalten könnte; Gesamtbetrag, den der Befragte für die Teilnahme an der Studie verdienen müsste (offene Antwort); Grund, warum der Befragte nicht an der Forschungsstudie teilnehmen würde; Bereitschaft zur Teilnahme an der Studie für einen Anreiz von insgesamt 60 Euro; Bereitschaft zur Aktivierung verschiedener Funktionen beim Herunterladen der App (Interaktionshistorie, Smartphone-Nutzung, Merkmale des sozialen Netzwerks, Netzqualitäts- und Standortinformationen, Aktivitätsdaten); vorherige Einladung zum Herunterladen der Forschungs-App; Herunterladen der Forschungs-App; Häufigkeit der Nutzung des Smartphones; Smartphone-Aktivitäten (Browsen, E-Mails, Fotografieren, Anzeigen/Post-Social-Media-Inhalte, Einkaufen, Online-Banking, Installieren von Apps, Verwenden von GPS-fähigen Apps, Verbinden über Bluethooth, Spielen, Streaming von Musik/Videos); Selbsteinschätzung der Kompetenz im Umgang mit dem Smartphone; Einstellung zu Umfragen und Teilnahme an Forschungsstudien (persönliches Interesse, Zeitverlust, Verkaufsgespräch, interessante Erfahrung, nützlich); Vertrauen in Institutionen zum Datenschutz (Marktforschungsunternehmen, Universitätsforscher, Regierungsbehörden wie das Statistische Bundesamt, Mobilfunkanbieter, App-Unternehmen, Kreditkartenunternehmen, Online-Händler und Social-Media-Plattformen); allgemeine Datenschutzbedenken; Gefühl der Datenschutzverletzung durch Banken und Kreditkartenunternehmen, Steuerbehörden, Regierungsbehörden, Marktforschung, soziale Netzwerke, Apps und Internetbrowser; Bedenken zur Datensicherheit bei Smartphone-Aktivitäten für Forschungszwecke (Online-Umfrage, Umfrage-Apps, Forschungs-Apps, SMS-Umfrage, Kamera, Aktivitätsdaten, GPS-Ortung, Bluetooth). Demographie: Geschlecht, Alter; Bundesland; höchster Schulabschluss; höchstes berufliches Bildungsniveau. Zusätzlich verkodet wurden: laufende Nummer; Dauer (Reaktionszeit in Sekunden); Gerätetyp, mit dem der Fragebogen ausgefüllt wurde. The goal of this study was to experimentally measure the influence of different incentive schemes on the willingness to participate in passive mobile data collection among German smartphone owners. The data come from a web survey among German smartphone users 18 years and older who were recruited from a German nonprobability online panel. In December 2017, 1,214 respondents completed a questionnaire on smartphone use and skills, privacy and security concerns, general attitudes towards survey research and research institutions. In addition, the questionnaire included an experiment on the willingness to participate in mobile data collection under different incentive conditions. Topics: Ownership of smartphone, cell phone, desktop or laptop computer, tablet computer, and/or e-book reader; type of smartphone; willingness to participate in mobile data collection under different incentive conditions; likelihood of downloading the app to particiapte in this research study; respondent would rather participate in the study if he could receive 100 euros; total amount to be earned for the respondent ot participate in the study (open answer); reason why the respondent wouldn´t participate in the research study; willlingness to participate in the study for an incentive of 60 euros in total; willingness to activate different functions when downloading the app (interaction history, smartphone usage, charateristics of the social network, network quality and location information, activity data); previous invitation for research app download; research app download; frequency of smartphone use; smartphone activities (browsing, e-mails, taking pictures, view/ post social media content, shopping, online banking, installing apps, using GPS-enabled apps, connecting via Bluethooth, playing games, stream music/ videos); self-assessment of smartphone skills; attitude towards surveys and participaton at research studies (personal interest, waste of time, sales pitch, interesting experience, useful); trust in institutions regarding data privacy (market research companies, university researchers, government authorities such as the Federal Statistical Office, mobile service provider, app companies, credit card companies, online retailer, and social media platforms); general privacy concern; feeling of privacy violation by banks and credit card companies, tax authorities, government agencies, market research, social networks, apps, and internet browsers; concern regarding data security with smartphone activities for research purposes (online survey, survey apps, research apps, SMS survey, camera, activity data, GPS location, Bluetooth). Demography: sex, age; federal state; highest level of school education; highest level of vocational education. Additionally coded was: running number; duration (response time in seconds); device type used to fill out the questionnaire.
ABSTRACT: With the popularization of low-cost mobile and wearable sensors, prior studies have utilized such sensors to track and analyze people's mental well-being, productivity, and behavioral patterns. However, there still is a lack of open datasets collected in-the-wild contexts with affective and cognitive state labels such as emotion, stress, and attention, which would limit the advances of research in affective computing and human-computer interaction. This work presents K-EmoPhone, an in-the-wild multi-modal dataset collected from 77 university students for seven days. This dataset contains (i) continuous probing of peripheral physiological signals and mobility data measured by commercial off-the-shelf devices; (ii) context and interaction data collected from individuals' smartphones; and (iii) 5,582 self-reported affect states, such as emotion, stress, attention, and disturbance, acquired by the experience sampling method. We anticipate that the presented dataset will contribute to the advancement of affective computing, emotion intelligence technologies, and attention management based on mobile and wearable sensor data.
Last update: Apr. 12, 2023 ----------------------------- * Version 1.1.2 (Jun. 3, 2023)
* Version 1.1.1 (Apr. 12, 2023)
* Version 1.1.0 (Feb. 5, 2023)
* Version 1.0.0 (Aug. 3, 2022)
|
Switzerland is leading the ranking by population share with mobile internet access, recording 95.06 percent. Following closely behind is Ukraine with 95.06 percent, while Moldova is trailing the ranking with 46.83 percent, resulting in a difference of 48.23 percentage points to the ranking leader, Switzerland. The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.
Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico
The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.
English(North America) Scripted Monologue Smartphone and PC speech dataset, collected from monologue based on given scripts, covering common expressions. Transcribed with text content and other attributes. Our dataset was collected from extensive and diversify speakers(302 North American), geographicly speaking, enhancing model performance in real and complex tasks.Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes network traffic data from more than 50 Android applications across 5 different scenarios. The applications are consistent in all scenarios, but other factors like location, device, and user vary (see Table 2 in the paper). The current repository pertains to Scenario D. Within the repository, for each application, there is a compressed file containing the relevant PCAP files. The PCAP files follow the naming convention: {Application Name}{Scenario ID}{#Trace}_Final.pcap.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a labelled dataset of mobile phone integrated accelerometer and gyroscope sensor data, in which falls and activities of daily life (ADL) were simulated as realistically as possible by martial artists. 5 different mobile phone devices were used for the recordings:Samsung Galaxy S4Samsumg Galaxy S5 MiniSony Z3Google Nexus 4Google Nexus 5Sampling Frequency: 5Hz, for both accelerometer and gyroscope sensors Simulation of falls and ADLWe recorded eight simulations, seven incorporating a fall and one simulation with ADL. The simulations were performed by five martial artists in parallel. Each simulation was repeated five times. The simulations were repeated with a second group of martial artists.Each martial artist was equipped with a belt bag in which the mobile device was put into. Dataset Content13 TablesDEVICE_ALL_ACCELERATION ... acceleration data of all devicesDEVICE_ALL_ORIENTATION ... orientation data of all devicesDEVICE_{modelname}_ACCELERATION ... acceleration data of a single deviceDEVICE_{modelname}_ORIENTATION ... orientation data of a single deviceMANUAL_LABELS ... manually labelled activities DatatypesAcceleration is stored as a three dimensional vector indicating acceleration along each device axis, not including gravity. All values have units of m/s^2. Addtionally, the total acceleration from the vector is stored. Formula: squared root of (x^2 + y^2 + z^2) Orientation is stored as three dimensional vector of angles azimuth, pitch and roll. All values are angles in degrees. Azimuth, angle between the magnetic north direction and the y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South, 270=WestPitch, rotation around x-axis (-180 to 180), with positive values when the z-axis moves toward the y-axis.Roll, rotation around y-axis (-90 to 90), with positive values when the x-axis moves toward the z-axis.Note: This definition is different from yaw, pitch and roll used in aviation where the X axis is along the long side of the plane (tail to nose). Timestamps are in milliseconds (unix epoch time). Stats159300 acceleration records159300 orientation records492 labels~ 6 six hours of fall simulations~ 4 hours of ADL simulations ACKNOWLEDGEMENTS The Knowledge Technologies Institute is part of the Faculty of Computer Science and Biomedical Engineering at the Graz University of Technology. The Know-Center is funded within the Austrian COMET Program under the auspices of the Austrian Ministry of Transport, Innovation and Technology, the Austrian Ministry of Economics and Labor and by the State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG. The DALIA project (AAL-2012-5-249) is co-financed under the Ambient Assisted Living Joint Programme of the European Commission (www.aal-europe.eu) and the National Funding Agencies of Austria, Belgium, Netherlands and Switzerland. The authors also wish to thank the martial artists of the Ninpo Bujutsu Club Graz, for simulating so many falls.
Dataset replaced by: http://data.europa.eu/euodp/data/dataset/cSJR3Uo36OTv3whVaa6sw
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 18,850 normal android application packages and 10,000 malware android packages which are used to identify the behaviour of malware application on permission they need at run-time.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4686357%2F186cf4f6172ca2c696819b7b09931bd3%2Fimage3.jpg?generation=1584955857130173&alt=media" alt="">
The presence of business in the digital space is a must now. Indeed, there’s hardly any company, be it a small startup or an international corporation, that wouldn’t be available online. For this, the company may use one of two options — to develop an app or a website, or both.
In the case of a limited budget, business owners often have to make a choice. Thus, considering that mobile traffic bypassed the desktop’s in 2016 and continues to grow, it becomes obvious that the business should become accessible and convenient for smartphone users. But what is better a responsive website or a mobile application?
Entrepreneurs often turn to development companies to ask this question. Lacking sufficient knowledge, they hope to get answers to their questions from people with experience in this field. So, we decided to compile a guide that will give you clear and understandable information.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4686357%2F0541557795519f24d812f78dfb51867e%2Fimage4.png?generation=1584955894277647&alt=media" alt="">
Let's look at the stats. It will help you understand why a mobile app may be the obvious choice for your client.
In 2019, smartphone users installed about 204 billion(!) applications on their devices. On average, this is more than 26 applications per inhabitant of the planet Earth. And if this is not enough evidence, here’s one more point. The expected revenue of mobile applications will be $189 billion in 2020.
It sounds impressive, but this does not mean that a mobile application is something indispensable for every business. Not at all. Let's go through the pros and cons of a mobile application and try to understand when it is needed.
Development costs. In order to reach the maximum audience with a mobile app, it is necessary to cover two main operating systems — iOS and Android. Development for each OS can be too expensive for small business owners and they will have to make difficult choices. The way out of this situation is cross-platform development. Why? Because there’s no need to guess which platform targets prefer using — iOS or Android. Instead, you create just one app that runs seamlessly on both platforms.
Maintenance. The application is a technical product that needs constant support. Upgrades should be carried out in a timely manner. Often, users need to personally update applications by downloading a new version, which is annoying. Regular bug-fixing for various devices (smartphones, tablets) and different operating systems might be a real problem. Plus, any update should be confirmed by the store where the application is placed.
Suitable for businesses that provide interactive and personalized content (refers to all lifestyle and healthcare solutions), require regular app usage (for instance, to-do lists), rely on visual interaction and so on. For games, like Angry Birds, creating an app is also a wise choice.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4686357%2Fd4f5bf1fdd0d0e65fae38c7251f56f13%2Fimage1.jpg?generation=1584955919738648&alt=media" alt="">
In order to be convenient for users of mobile devices, a website should be responsive. We want to make an emphasis on this since it is critically important. Most of the traffic on the Internet comes from mobile devices, so your website should be adaptable, or in other words, mobile-friendly. If a mobile user needs to zoom in all the necessary elements and text to see something, they will immediately quit your website.
On the other hand, a responsive website has the following benefits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.
Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.
Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.
User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.
Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.
GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.
Market Intelligence and Consumer Behaviour: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.
High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.
Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.
Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.
The Palestinian society's access to information and communication technology tools is one of the main inputs to achieve social development and economic change to the status of Palestinian society; on the basis of its impact on the revolution of information and communications technology that has become a feature of this era. Therefore, and within the scope of the efforts exerted by the Palestinian Central Bureau of Statistics in providing official Palestinian statistics on various areas of life for the Palestinian community, PCBS implemented the household survey for information and communications technology for the year 2023. The main objective of this report is to present the trends of accessing and using information and communication technology by households and individuals in Palestine, and enriching the information and communications technology database with indicators that meet national needs and are in line with international recommendations.
Palestine, West Bank, Gaza strip
Household, Individual
All Palestinian households and individuals (10 years and above) whose usual place of residence in 2023 was in the state of Palestine.
Sample survey data [ssd]
Sampling Frame The sampling frame consists of master sample which were enumerated in the 2017 census. Each enumeration area consists of buildings and housing units with an average of about 150 households. These enumeration areas are used as primary sampling units (PSUs) in the first stage of the sampling selection.
Sample Size The sample size is 8,040 households.
Sampling Design The sample is three stages stratified cluster (pps) sample. The design comprised three stages: Stage (1): Selection a stratified sample of 536 enumeration areas with (pps) method. Stage (2): Selection a stratified random sample of 15 households from each enumeration area selected in the first stage. Stage (3): Selection one person of the (10 years and above) age group in a random method by using KISH TABLES.
Sample Strata The population was divided by: 1- Governorate (16 governorates, where Jerusalem was considered as two statistical areas) 2- Type of Locality (urban, rural, camps).
Computer Assisted Personal Interview [capi]
Questionnaire The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.
Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.
Section III: Data on Individuals (10 years and above) about computer use, access to the Internet, possession of a mobile phone, information threats, and E-commerce.
Field Editing and Supervising
• Data collection and coordination were carried out in the field according to the pre-prepared plan, where instructions, models and tools were available for fieldwork. • Audit process on the PC-Tablet is through the establishment of all automated rules and the office on the program to cover all the required controls according to the criteria specified. • For the privacy of Jerusalem (J1) data were collected in a paper questionnaire. Then the supervisor verifies the questionnaire in a formal and technical manner according to the pre-prepared audit rules. • Fieldwork visits was carried out by the project coordinator, supervisors and project management to check edited questionnaire and the performance of fieldworkers.
Data Processing
Programming Consistency Check The data collection program was designed in accordance with the questionnaire's design and its skips. The program was examined more than once before the conducting of the training course by the project management where the notes and modifications were reflected on the program by the Data Processing Department after ensuring that it was free of errors before going to the field.
Using PC-tablet devices reduced data processing stages, and fieldworkers collected data and sent it directly to server, and project management withdraw the data at any time.
In order to work in parallel with Jerusalem (J1), a data entry program was developed using the same technology and using the same database used for PC-tablet devices.
Data Cleaning After the completion of data entry and audit phase, data is cleaned by conducting internal tests for the outlier answers and comprehensive audit rules through using SPSS program to extract and modify errors and discrepancies to prepare clean and accurate data ready for tabulation and publishing.
The response rate reached 83.7%.
Sampling Errors Data of this survey affected by sampling errors due to use of the sample and not a complete enumeration. Therefore, certain differences are expected in comparison with the real values obtained through censuses. Variance were calculated for the most important indicators, there is no problem to disseminate results at the national level and at the level of the West Bank and Gaza Strip.
Non-Sampling Errors Non-Sampling errors are possible at all stages of the project, during data collection or processing. These are referred to non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, as well as practical and theoretical training during the training course.
The implementation of the survey encountered non-response where the case (household was not present at home) during the fieldwork visit become the high percentage of the non-response cases. The total non-response rate reached 16.3%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository is part of the ITC-NetMingledApp dataset, which includes network traffic data from 36 Android applications, with each capture featuring concurrent traffic from multiple applications and smartphones. This repository contains part #2 of the data related to the Iran-Tehran scenario. Each capture is stored in a compressed file containing the relevant PCAP files of the associated applications. The PCAP files are named according to a convention: {TimeStamp}_{Application Name}{Download-Upload Speed}.pcap Part #1 of Iran-Tehran scenario is in the Tehran Dataset #1 (https://doi.org/10.17632/9frgkybxhn.1) repository.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset contains two significant mobile gestures for brain-mobile phone interfaces (BMPIs: (i) motor imagery of tapping on the screen of a mobile device and (ii) motor imagery of swiping down with a thumb on the screen of a mobile device. The raw EEG signals were recorded using the Emotiv EPOC Flex (Model 1.0) headset with saline-based sensors and Emotiv Pro (2.5.1.227) software. The sampling rate is 128 Hz. Each epoch contains 3.5 s signals. The first 1 s signal is recorded before the MI task starts (5 s to 6 s interval in the timing plan), and the next 2.5 s signal is recorded during the MI execution (6 s to 8.5 s interval in the timing plan). Please refer to the reference study below for details.
The file names are constructed as follows. For example, taking "D01_s1" and "D01" in the file name refers to subject "01", and "s1" refers to session 1 ("s2" refers to session 2). The label data is given in a separate folder in Matlab format.
The data is provided in two different forms for use (the desired is preferable):
The set_files folder contains the data prepared for import in EEGLAB. EEGLAB must be installed, and the set files must be imported to access the data. The data is in epoched format in 3D (channels, sample_points, trials). With the EEGLAB interface, all the data can be accessed, and EEGLAB functions can be executed. Also, the EEG variable, which is built after importing the *.set file, contains all the information about the experiment. With the EEG.data variable, epoched data in the dimensions (channels, sample_points, trials) can be accessed.
The mat_files folder contains data in mat file format. In these files, epoched data is stored in a 3-D array of size (channels, sample_points, trials). You can access the data as follows. For example, all data from the first session of subject D01 can be retrieved as follows. Load the mat file with the load('D01_s1.mat') code, and access the data using the EEG variable in the workspace. For instance, 13x448 x101 sized epoched data (channels, sample_points, trials) can be retrieved with the command EEG.data. Other information about the experiments and subjects is also included in the fields of the EEG variable.
This research was supported by the Turkish Scientific and Research Council (TUBITAK) under project number 119E397.
The following article can be cited in academic studies as follow.
Yilmaz, C.M., Yilmaz, B.H. & Kose, C. MI-BMPI motor imagery brain–mobile phone dataset and performance evaluation of voting ensembles utilizing QPDM. Neural Comput & Applic 37, 4679–4696 (2025). https://doi.org/10.1007/s00521-024-10917-5
Permission must be obtained for use in commercial studies.
This dataset is licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
This dataset was created by Isuru Mahakumara
It contains the following files:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Detailed comparison of mobile and desktop code comments. Dataset of manually classified Android mobile apps code comments.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.