100+ datasets found
  1. h

    Data from: test-data-generator

    • huggingface.co
    Updated Oct 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francisco Theodoro Arantes Florencio (2025). test-data-generator [Dataset]. https://huggingface.co/datasets/franciscoflorencio/test-data-generator
    Explore at:
    Dataset updated
    Oct 21, 2025
    Authors
    Francisco Theodoro Arantes Florencio
    Description

    Dataset Card for test-data-generator

    This dataset has been created with distilabel.

      Dataset Summary
    

    This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/franciscoflorencio/test-data-generator/raw/main/pipeline.yaml"

    or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/franciscoflorencio/test-data-generator.

  2. f

    Statistical testing result of accelerometer data processed for random number...

    • figshare.com
    zip
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S Lee Hong; Chang Liu (2016). Statistical testing result of accelerometer data processed for random number generator seeding [Dataset]. http://doi.org/10.6084/m9.figshare.1273869.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Authors
    S Lee Hong; Chang Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set contains the result of applying the NIST Statistical Test Suite on accelerometer data processed for random number generator seeding. The NIST Statistical Test Suite can be downloaded from: http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html. The format of the output is explained in http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf.

  3. Fake Employee Dataset

    • kaggle.com
    zip
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oyekanmi Olamilekan (2023). Fake Employee Dataset [Dataset]. https://www.kaggle.com/datasets/oyekanmiolamilekan/fake-employee-dataset
    Explore at:
    zip(162874 bytes)Available download formats
    Dataset updated
    Nov 20, 2023
    Authors
    Oyekanmi Olamilekan
    Description

    Creating a robust employee dataset for data analysis and visualization involves several key fields that capture different aspects of an employee's information. Here's a list of fields you might consider including: Employee ID: A unique identifier for each employee. Name: First name and last name of the employee. Gender: Male, female, non-binary, etc. Date of Birth: Birthdate of the employee. Email Address: Contact email of the employee. Phone Number: Contact number of the employee. Address: Home or work address of the employee. Department: The department the employee belongs to (e.g., HR, Marketing, Engineering, etc.). Job Title: The specific job title of the employee. Manager ID: ID of the employee's manager. Hire Date: Date when the employee was hired. Salary: Employee's salary or compensation. Employment Status: Full-time, part-time, contractor, etc. Employee Type: Regular, temporary, contract, etc. Education Level: Highest level of education attained by the employee. Certifications: Any relevant certifications the employee holds. Skills: Specific skills or expertise possessed by the employee. Performance Ratings: Ratings or evaluations of employee performance. Work Experience: Previous work experience of the employee. Benefits Enrollment: Information on benefits chosen by the employee (e.g., healthcare plan, retirement plan, etc.). Work Location: Physical location where the employee works. Work Hours: Regular working hours or shifts of the employee. Employee Status: Active, on leave, terminated, etc. Emergency Contact: Contact information of the employee's emergency contact person. Employee Satisfaction Survey Responses: Data from employee satisfaction surveys, if applicable.

    Code Url: https://github.com/intellisenseCodez/faker-data-generator

  4. i

    Dataset of article: Synthetic Datasets Generator for Testing Information...

    • ieee-dataport.org
    Updated Mar 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Santos (2020). Dataset of article: Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools [Dataset]. https://ieee-dataport.org/open-access/dataset-article-synthetic-datasets-generator-testing-information-visualization-and
    Explore at:
    Dataset updated
    Mar 13, 2020
    Authors
    Carlos Santos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset used in the article entitled 'Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools'. These datasets can be used to test several characteristics in machine learning and data processing algorithms.

  5. D

    Sandbox Data Generator Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Sandbox Data Generator Market Research Report 2033 [Dataset]. https://dataintelo.com/report/sandbox-data-generator-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Sandbox Data Generator Market Outlook




    According to our latest research, the global Sandbox Data Generator market size reached USD 1.41 billion in 2024 and is projected to grow at a robust CAGR of 11.2% from 2025 to 2033. By the end of the forecast period, the market is expected to attain a value of USD 3.71 billion by 2033. This remarkable growth is primarily driven by the increasing demand for secure, reliable, and scalable test data generation solutions across industries such as BFSI, healthcare, and IT and telecommunications, as organizations strive to enhance their data privacy and compliance capabilities in an era of heightened regulatory scrutiny and digital transformation.




    A major growth factor propelling the Sandbox Data Generator market is the intensifying focus on data privacy and regulatory compliance across global enterprises. With stringent regulations such as GDPR, CCPA, and HIPAA becoming the norm, organizations are under immense pressure to ensure that non-production environments do not expose sensitive information. Sandbox data generators, which enable the creation of realistic yet anonymized or masked data sets for testing and development, are increasingly being adopted to address these compliance challenges. Furthermore, the rise of DevOps and agile methodologies has led to a surge in demand for efficient test data management, as businesses seek to accelerate software development cycles without compromising on data security. The integration of advanced data masking, subsetting, and anonymization features within sandbox data generation platforms is therefore a critical enabler for organizations aiming to achieve both rapid innovation and regulatory adherence.




    Another significant driver for the Sandbox Data Generator market is the exponential growth of digital transformation initiatives across various industry verticals. As enterprises migrate to cloud-based infrastructures and adopt advanced technologies such as AI, machine learning, and big data analytics, the need for high-quality, production-like test data has never been more acute. Sandbox data generators play a pivotal role in supporting these digital initiatives by supplying synthetic yet realistic datasets that facilitate robust testing, model training, and system validation. This, in turn, helps organizations minimize the risks associated with deploying new applications or features, while reducing the time and costs associated with traditional data provisioning methods. The rise of microservices architecture and API-driven development further amplifies the necessity for dynamic, scalable, and automated test data generation solutions.




    Additionally, the proliferation of data breaches and cyber threats has underscored the importance of robust data protection strategies, further fueling the adoption of sandbox data generators. Enterprises are increasingly recognizing that using real production data in test environments can expose them to significant security vulnerabilities and compliance risks. By leveraging sandbox data generators, organizations can create safe, de-identified datasets that maintain the statistical properties of real data, enabling comprehensive testing without jeopardizing sensitive information. This trend is particularly pronounced in sectors such as BFSI and healthcare, where data sensitivity and compliance requirements are paramount. As a result, vendors are investing heavily in enhancing the security, scalability, and automation capabilities of their sandbox data generation solutions to cater to the evolving needs of these high-stakes industries.




    From a regional perspective, North America is anticipated to maintain its dominance in the global Sandbox Data Generator market, driven by the presence of leading technology providers, a mature regulatory landscape, and high digital adoption rates among enterprises. However, the Asia Pacific region is poised for the fastest growth, fueled by rapid digitalization, increasing investments in IT infrastructure, and growing awareness of data privacy and compliance issues. Europe also represents a significant market, supported by stringent data protection regulations and a strong focus on innovation across key industries. As organizations worldwide continue to prioritize data security and agile development, the demand for advanced sandbox data generation solutions is expected to witness sustained growth across all major regions.



    Component Analysis




    The Sandbox Data Genera

  6. Global Synthetic Data Generation Market Size By Offering (Solution/Platform,...

    • verifiedmarketresearch.com
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Global Synthetic Data Generation Market Size By Offering (Solution/Platform, Services), By Data Type (Tabular, Text), By Application (AI/ML Training & Development, Test Data Management), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/synthetic-data-generation-market/
    Explore at:
    Dataset updated
    Oct 3, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Market size was valued at USD 0.4 Billion in 2024 and is projected to reach USD 9.3 Billion by 2032, growing at a CAGR of 46.5 % from 2026 to 2032.The Synthetic Data Generation Market is driven by the rising demand for AI and machine learning, where high-quality, privacy-compliant data is crucial for model training. Businesses seek synthetic data to overcome real-data limitations, ensuring security, diversity, and scalability without regulatory concerns. Industries like healthcare, finance, and autonomous vehicles increasingly adopt synthetic data to enhance AI accuracy while complying with stringent privacy laws.Additionally, cost efficiency and faster data availability fuel market growth, reducing dependency on expensive, time-consuming real-world data collection. Advancements in generative AI, deep learning, and simulation technologies further accelerate adoption, enabling realistic synthetic datasets for robust AI model development.

  7. G

    Synthetic Test Data Generation Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Test Data Generation Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-test-data-generation-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Test Data Generation Market Outlook



    According to our latest research, the global synthetic test data generation market size reached USD 1.85 billion in 2024 and is projected to grow at a robust CAGR of 31.2% during the forecast period, reaching approximately USD 21.65 billion by 2033. The marketÂ’s remarkable growth is primarily driven by the increasing demand for high-quality, privacy-compliant data to support software testing, AI model training, and data privacy initiatives across multiple industries. As organizations strive to meet stringent regulatory requirements and accelerate digital transformation, the adoption of synthetic test data generation solutions is surging at an unprecedented rate.



    A key growth factor for the synthetic test data generation market is the rising awareness and enforcement of data privacy regulations such as GDPR, CCPA, and HIPAA. These regulations have compelled organizations to rethink their data management strategies, particularly when it comes to using real data in testing and development environments. Synthetic data offers a powerful alternative, allowing companies to generate realistic, risk-free datasets that mirror production data without exposing sensitive information. This capability is particularly vital for sectors like BFSI and healthcare, where data breaches can have severe financial and reputational repercussions. As a result, businesses are increasingly investing in synthetic test data generation tools to ensure compliance, reduce liability, and enhance data security.



    Another significant driver is the explosive growth in artificial intelligence and machine learning applications. AI and ML models require vast amounts of diverse, high-quality data for effective training and validation. However, obtaining such data can be challenging due to privacy concerns, data scarcity, or labeling costs. Synthetic test data generation addresses these challenges by producing customizable, labeled datasets that can be tailored to specific use cases. This not only accelerates model development but also improves model robustness and accuracy by enabling the creation of edge cases and rare scenarios that may not be present in real-world data. The synergy between synthetic data and AI innovation is expected to further fuel market expansion throughout the forecast period.



    The increasing complexity of software systems and the shift towards DevOps and continuous integration/continuous deployment (CI/CD) practices are also propelling the adoption of synthetic test data generation. Modern software development requires rapid, iterative testing across a multitude of environments and scenarios. Relying on masked or anonymized production data is often insufficient, as it may not capture the full spectrum of conditions needed for comprehensive testing. Synthetic data generation platforms empower development teams to create targeted datasets on demand, supporting rigorous functional, performance, and security testing. This leads to faster release cycles, reduced costs, and higher software quality, making synthetic test data generation an indispensable tool for digital enterprises.



    In the realm of synthetic test data generation, Synthetic Tabular Data Generation Software plays a crucial role. This software specializes in creating structured datasets that resemble real-world data tables, making it indispensable for industries that rely heavily on tabular data, such as finance, healthcare, and retail. By generating synthetic tabular data, organizations can perform extensive testing and analysis without compromising sensitive information. This capability is particularly beneficial for financial institutions that need to simulate transaction data or healthcare providers looking to test patient management systems. As the demand for privacy-compliant data solutions grows, the importance of synthetic tabular data generation software is expected to increase, driving further innovation and adoption in the market.



    From a regional perspective, North America currently leads the synthetic test data generation market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The dominance of North America can be attributed to the presence of major technology providers, early adoption of advanced testing methodologies, and a strong regulatory focus on data privacy. EuropeÂ’s stringent privacy regulations an

  8. T

    Test Data Generation Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Test Data Generation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/test-data-generation-tools-1418898
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Oct 20, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Test Data Generation Tools market is poised for significant expansion, projected to reach an estimated USD 1.5 billion in 2025 and exhibit a robust Compound Annual Growth Rate (CAGR) of approximately 15% through 2033. This growth is primarily fueled by the escalating complexity of software applications, the increasing demand for agile development methodologies, and the critical need for comprehensive and realistic test data to ensure application quality and performance. Enterprises across all sizes, from large corporations to Small and Medium-sized Enterprises (SMEs), are recognizing the indispensable role of effective test data management in mitigating risks, accelerating time-to-market, and enhancing user experience. The drive for cost optimization and regulatory compliance further propels the adoption of advanced test data generation solutions, as manual data creation is often time-consuming, error-prone, and unsustainable in today's fast-paced development cycles. The market is witnessing a paradigm shift towards intelligent and automated data generation, moving beyond basic random or pathwise techniques to more sophisticated goal-oriented and AI-driven approaches that can generate highly relevant and production-like data. The market landscape is characterized by a dynamic interplay of established technology giants and specialized players, all vying for market share by offering innovative features and tailored solutions. Prominent companies like IBM, Informatica, Microsoft, and Broadcom are leveraging their extensive portfolios and cloud infrastructure to provide integrated data management and testing solutions. Simultaneously, specialized vendors such as DATPROF, Delphix Corporation, and Solix Technologies are carving out niches by focusing on advanced synthetic data generation, data masking, and data subsetting capabilities. The evolution of cloud-native architectures and microservices has created a new set of challenges and opportunities, with a growing emphasis on generating diverse and high-volume test data for distributed systems. Asia Pacific, particularly China and India, is emerging as a significant growth region due to the burgeoning IT sector and increasing investments in digital transformation initiatives. North America and Europe continue to be mature markets, driven by strong R&D investments and a high level of digital adoption. The market's trajectory indicates a sustained upward trend, driven by the continuous pursuit of software excellence and the critical need for robust testing strategies. This report provides an in-depth analysis of the global Test Data Generation Tools market, examining its evolution, current landscape, and future trajectory from 2019 to 2033. The Base Year for analysis is 2025, with the Estimated Year also being 2025, and the Forecast Period extending from 2025 to 2033. The Historical Period covered is 2019-2024. We delve into the critical aspects of this rapidly growing industry, offering insights into market dynamics, key players, emerging trends, and growth opportunities. The market is projected to witness substantial growth, with an estimated value reaching several million by the end of the forecast period.

  9. Z

    Data from: Reliability Analysis of Random Telegraph Noisebased True Random...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zanotti, Tommaso; Ranjan, Alok; O'Shea, Sean J.; Raghavan, Nagarajan; Thamankar, Dr. Ramesh; Pey, Kin Leong; PUGLISI, Francesco Maria (2024). Reliability Analysis of Random Telegraph Noisebased True Random Number Generators [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13169457
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    Chalmers University of Technology
    Singapore University of Technology and Design
    Università degli Studi di Modena e Reggio Emilia
    Agency for Science, Technology and Research
    University of Modena and Reggio Emilia
    VIT University
    Authors
    Zanotti, Tommaso; Ranjan, Alok; O'Shea, Sean J.; Raghavan, Nagarajan; Thamankar, Dr. Ramesh; Pey, Kin Leong; PUGLISI, Francesco Maria
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    • Repository author: Tommaso Zanotti* email: tommaso.zanotti@unimore.it or francescomaria.puglisi@unimore.it * Version v1.0

    This repository includes MATLAB files and datasets related to the IEEE IIRW 2023 conference proceeding:T. Zanotti et al., "Reliability Analysis of Random Telegraph Noisebased True Random Number Generators," 2023 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 2023, pp. 1-6, doi: 10.1109/IIRW59383.2023.10477697

    The repository includes:

    The data of the bitmaps reported in Fig. 4, i.e., the results of the simulation of the ideal RTN-based TRNG circuit for different reseeding strategies. To load and plot the data use the "plot_bitmaps.mat" file.

    The result of the circuit simulations considering the EvolvingRTN from the HfO2 device shown in Fig. 7, for two Rgain values. Specifically, the data is contained in the following csv files:

    "Sim_TRNG_Circuit_HfO2_3_20s_Vth_210m_no_Noise_Ibias_11n.csv" (lower Rgain)

    "Sim_TRNG_Circuit_HfO2_3_20s_Vth_210m_no_Noise_Ibias_4_8n.csv" (higher Rgain)

    The result of the circuit simulations considering the temporary RTN from the SiO2 device shown in Fig. 8. Specifically, the data is contained in the following csv files:

    "Sim_TRNG_Circuit_SiO2_1c_300s_Vth_180m_Noise_Ibias_1.5n.csv" (ref. Rgain)

    "Sim_TRNG_Circuit_SiO2_1c_100s_200s_Vth_180m_Noise_Ibias_1.575n.csv" (lower Rgain)

    "Sim_TRNG_Circuit_SiO2_1c_100s_200s_Vth_180m_Noise_Ibias_1.425n.csv" (higher Rgain)

  10. D

    Data Creation Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Creation Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/data-creation-tool-492424
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Creation Tool market is booming, projected to reach $27.2 Billion by 2033, with a CAGR of 18.2%. Discover key trends, leading companies (Informatica, Delphix, Broadcom), and regional market insights in this comprehensive analysis. Explore how synthetic data generation is transforming software development, AI, and data analytics.

  11. T

    Synthetic Data Generation Market Size and Share Forecast Outlook 2025 to...

    • futuremarketinsights.com
    html, pdf
    Updated Oct 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sudip Saha (2025). Synthetic Data Generation Market Size and Share Forecast Outlook 2025 to 2035 [Dataset]. https://www.futuremarketinsights.com/reports/synthetic-data-generation-market
    Explore at:
    html, pdfAvailable download formats
    Dataset updated
    Oct 28, 2025
    Authors
    Sudip Saha
    License

    https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy

    Time period covered
    2025 - 2035
    Area covered
    Worldwide
    Description

    The Synthetic Data Generation Market is estimated to be valued at USD 0.4 billion in 2025 and is projected to reach USD 4.4 billion by 2035, registering a compound annual growth rate (CAGR) of 25.9% over the forecast period.

    MetricValue
    Synthetic Data Generation Market Estimated Value in (2025E)USD 0.4 billion
    Synthetic Data Generation Market Forecast Value in (2035F)USD 4.4 billion
    Forecast CAGR (2025 to 2035)25.9%
  12. d

    AI Training Data | Annotated Checkout Flows for Retail, Restaurant, and...

    • datarade.ai
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MealMe (2024). AI Training Data | Annotated Checkout Flows for Retail, Restaurant, and Marketplace Websites [Dataset]. https://datarade.ai/data-products/ai-training-data-annotated-checkout-flows-for-retail-resta-mealme
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    MealMe
    Area covered
    United States of America
    Description

    AI Training Data | Annotated Checkout Flows for Retail, Restaurant, and Marketplace Websites Overview

    Unlock the next generation of agentic commerce and automated shopping experiences with this comprehensive dataset of meticulously annotated checkout flows, sourced directly from leading retail, restaurant, and marketplace websites. Designed for developers, researchers, and AI labs building large language models (LLMs) and agentic systems capable of online purchasing, this dataset captures the real-world complexity of digital transactions—from cart initiation to final payment.

    Key Features

    Breadth of Coverage: Over 10,000 unique checkout journeys across hundreds of top e-commerce, food delivery, and service platforms, including but not limited to Walmart, Target, Kroger, Whole Foods, Uber Eats, Instacart, Shopify-powered sites, and more.

    Actionable Annotation: Every flow is broken down into granular, step-by-step actions, complete with timestamped events, UI context, form field details, validation logic, and response feedback. Each step includes:

    Page state (URL, DOM snapshot, and metadata)

    User actions (clicks, taps, text input, dropdown selection, checkbox/radio interactions)

    System responses (AJAX calls, error/success messages, cart/price updates)

    Authentication and account linking steps where applicable

    Payment entry (card, wallet, alternative methods)

    Order review and confirmation

    Multi-Vertical, Real-World Data: Flows sourced from a wide variety of verticals and real consumer environments, not just demo stores or test accounts. Includes complex cases such as multi-item carts, promo codes, loyalty integration, and split payments.

    Structured for Machine Learning: Delivered in standard formats (JSONL, CSV, or your preferred schema), with every event mapped to action types, page features, and expected outcomes. Optional HAR files and raw network request logs provide an extra layer of technical fidelity for action modeling and RLHF pipelines.

    Rich Context for LLMs and Agents: Every annotation includes both human-readable and model-consumable descriptions:

    “What the user did” (natural language)

    “What the system did in response”

    “What a successful action should look like”

    Error/edge case coverage (invalid forms, OOS, address/payment errors)

    Privacy-Safe & Compliant: All flows are depersonalized and scrubbed of PII. Sensitive fields (like credit card numbers, user addresses, and login credentials) are replaced with realistic but synthetic data, ensuring compliance with privacy regulations.

    Each flow tracks the user journey from cart to payment to confirmation, including:

    Adding/removing items

    Applying coupons or promo codes

    Selecting shipping/delivery options

    Account creation, login, or guest checkout

    Inputting payment details (card, wallet, Buy Now Pay Later)

    Handling validation errors or OOS scenarios

    Order review and final placement

    Confirmation page capture (including order summary details)

    Why This Dataset?

    Building LLMs, agentic shopping bots, or e-commerce automation tools demands more than just page screenshots or API logs. You need deeply contextualized, action-oriented data that reflects how real users interact with the complex, ever-changing UIs of digital commerce. Our dataset uniquely captures:

    The full intent-action-outcome loop

    Dynamic UI changes, modals, validation, and error handling

    Nuances of cart modification, bundle pricing, delivery constraints, and multi-vendor checkouts

    Mobile vs. desktop variations

    Diverse merchant tech stacks (custom, Shopify, Magento, BigCommerce, native apps, etc.)

    Use Cases

    LLM Fine-Tuning: Teach models to reason through step-by-step transaction flows, infer next-best-actions, and generate robust, context-sensitive prompts for real-world ordering.

    Agentic Shopping Bots: Train agents to navigate web/mobile checkouts autonomously, handle edge cases, and complete real purchases on behalf of users.

    Action Model & RLHF Training: Provide reinforcement learning pipelines with ground truth “what happens if I do X?” data across hundreds of real merchants.

    UI/UX Research & Synthetic User Studies: Identify friction points, bottlenecks, and drop-offs in modern checkout design by replaying flows and testing interventions.

    Automated QA & Regression Testing: Use realistic flows as test cases for new features or third-party integrations.

    What’s Included

    10,000+ annotated checkout flows (retail, restaurant, marketplace)

    Step-by-step event logs with metadata, DOM, and network context

    Natural language explanations for each step and transition

    All flows are depersonalized and privacy-compliant

    Example scripts for ingesting, parsing, and analyzing the dataset

    Flexible licensing for research or commercial use

    Sample Categories Covered

    Grocery delivery (Instacart, Walmart, Kroger, Target, etc.)

    Restaurant takeout/delivery (Ub...

  13. G

    Synthetic Data Generator for Telco AI Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Data Generator for Telco AI Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-data-generator-for-telco-ai-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Oct 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generator for Telco AI Market Outlook



    According to our latest research, the global Synthetic Data Generator for Telco AI market size reached USD 1.48 billion in 2024, reflecting the growing adoption of artificial intelligence and machine learning technologies across the telecommunications sector. The market is projected to expand at a robust CAGR of 33.2% from 2025 to 2033, reaching a forecasted value of USD 16.45 billion by 2033. This remarkable growth is primarily fueled by the increasing demand for high-quality, privacy-compliant training data to power AI-driven telco solutions, alongside the rapid digital transformation initiatives being undertaken by telecom operators worldwide.




    One of the primary growth drivers for the Synthetic Data Generator for Telco AI market is the exponential rise in data privacy regulations and concerns surrounding the use of real customer data for AI model training. As telecom operators handle massive volumes of sensitive user information, compliance with regulations such as GDPR, CCPA, and other local data protection laws has become paramount. Synthetic data generators provide a viable solution by creating realistic, anonymized datasets that mimic real-world scenarios without exposing actual customer information. This enables telcos to accelerate AI development, enhance model accuracy, and reduce the risk of data breaches, thus fostering the widespread adoption of synthetic data generation tools across the industry.




    Another significant factor propelling market growth is the increasing complexity of telco networks and the need for advanced analytics to optimize operations. With the deployment of 5G, IoT, and edge computing, telecommunications infrastructure has become more intricate, generating vast amounts of structured and unstructured data. Synthetic data generators empower telcos to simulate rare network events, test AI algorithms under diverse scenarios, and improve predictive maintenance, fraud detection, and customer analytics. This capability not only enhances operational efficiency but also reduces downtime and improves customer satisfaction, further driving the integration of synthetic data solutions in telco AI workflows.




    Furthermore, the shift towards digital transformation and the adoption of cloud-native technologies by telecom operators are accelerating the demand for scalable, flexible synthetic data generation platforms. As telcos modernize their IT infrastructure and embrace cloud-based AI solutions, the need for on-demand, customizable synthetic datasets has surged. Synthetic data generators enable seamless integration with cloud platforms, support agile development cycles, and facilitate collaboration across distributed teams. This trend is expected to continue as telecom operators invest in next-generation AI applications to stay competitive, improve service delivery, and unlock new revenue streams.




    Regionally, North America currently dominates the Synthetic Data Generator for Telco AI market, accounting for the largest revenue share in 2024, followed closely by Europe and Asia Pacific. The strong presence of leading telecom operators, advanced AI research capabilities, and a mature regulatory environment in these regions contribute to the rapid adoption of synthetic data solutions. Asia Pacific is poised for the fastest growth over the forecast period, driven by the expansion of 5G networks, increasing investments in AI, and the proliferation of connected devices. Meanwhile, Latin America and the Middle East & Africa are witnessing steady growth as telcos in these regions accelerate their digital transformation journeys, albeit from a smaller base.





    Component Analysis



    The Synthetic Data Generator for Telco AI market is segmented by component into Software and Services. Software solutions form the backbone of this market, offering advanced tools for data synthesis, simulation, and integration with existing telco AI workflows. These platforms are designed to generate high-fid

  14. Dataset for: Simulation and data-generation for random-effects network...

    • wiley.figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Svenja Elisabeth Seide; Katrin Jensen; Meinhard Kieser (2023). Dataset for: Simulation and data-generation for random-effects network meta-analysis of binary outcome [Dataset]. http://doi.org/10.6084/m9.figshare.8001863.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Wileyhttps://www.wiley.com/
    Authors
    Svenja Elisabeth Seide; Katrin Jensen; Meinhard Kieser
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The performance of statistical methods is frequently evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, available data- generating models are restricted to either inclusion of two-armed trials or the fixed-effect model. Based on data-generation in the pairwise case, we propose a framework for the simulation of random-effect network meta-analyses including multi-arm trials with binary outcome. The only of the common data-generating models which is directly applicable to a random-effects network setting uses strongly restrictive assumptions. To overcome these limitations, we modify this approach and derive a related simulation procedure using odds ratios as effect measure. The performance of this procedure is evaluated with synthetic data and in an empirical example.

  15. Linear Dataset

    • kaggle.com
    zip
    Updated Dec 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opamusora (Ivan Viakhirev) (2022). Linear Dataset [Dataset]. https://www.kaggle.com/datasets/opamusora/linear-dataset-for-tests
    Explore at:
    zip(89011 bytes)Available download formats
    Dataset updated
    Dec 11, 2022
    Authors
    opamusora (Ivan Viakhirev)
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A simple linear dataset with data generation code attached

  16. Parabolic Dataset

    • kaggle.com
    zip
    Updated Dec 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opamusora (Ivan Viakhirev) (2022). Parabolic Dataset [Dataset]. https://www.kaggle.com/datasets/opamusora/parabolic-dataset
    Explore at:
    zip(155298 bytes)Available download formats
    Dataset updated
    Dec 11, 2022
    Authors
    opamusora (Ivan Viakhirev)
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A simple parabolic dataset with data generation code attached

  17. G

    Synthetic ISO 20022 Test Data Generation Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic ISO 20022 Test Data Generation Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-iso-2-test-data-generation-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 7, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic ISO 20022 Test Data Generation Market Outlook



    Based on our latest research and analysis, the global Synthetic ISO 20022 Test Data Generation market size reached USD 682 million in 2024, reflecting a robust surge in demand driven by the rapid adoption of ISO 20022 messaging standards across the financial ecosystem. The market is poised for remarkable expansion, with a projected CAGR of 14.7% from 2025 to 2033. By the end of 2033, the market size is forecasted to reach approximately USD 2.16 billion. This growth is underpinned by regulatory mandates, the need for enhanced interoperability, and the increasing complexity of financial transactions globally.




    The primary growth factor for the Synthetic ISO 20022 Test Data Generation market lies in the accelerating transition of global financial institutions toward ISO 20022 messaging standards. Regulatory bodies such as SWIFT, the European Central Bank, and other major payment market infrastructures have mandated the adoption of ISO 20022, spurring banks, payment service providers, and other financial entities to overhaul legacy systems. This transition necessitates extensive testing to ensure compliance, seamless integration, and operational continuity, thereby fueling demand for synthetic test data generation solutions. These solutions enable organizations to simulate a wide variety of transaction scenarios, identify interoperability issues, and validate system behaviors without exposing sensitive customer data, which is critical in an era of stringent data privacy regulations.




    Another pivotal driver is the increasing complexity and volume of financial transactions, particularly in the realms of cross-border payments, securities settlement, and trade finance. As financial products and services diversify, the need for robust and scalable test data generation tools intensifies. Synthetic ISO 20022 Test Data Generation tools offer the capability to generate vast datasets that mimic real-world transaction flows, supporting rigorous testing for both functional and non-functional requirements. This capability is indispensable for large-scale financial institutions and fintechs that must ensure their systems can handle high transaction volumes, complex message structures, and evolving regulatory requirements. Furthermore, the integration of AI and machine learning into test data generation platforms is enhancing the ability to create more realistic and diverse test scenarios, further driving market growth.




    The growing focus on cybersecurity and data privacy presents another significant growth catalyst for the market. Financial organizations are increasingly wary of using production data in test environments due to the risk of data breaches and regulatory penalties. Synthetic ISO 20022 Test Data Generation solutions provide a secure alternative by generating anonymized, non-sensitive data that mirrors production data characteristics. This approach not only mitigates compliance risks but also accelerates the testing process, enabling organizations to bring new products and services to market faster. The convergence of digital transformation initiatives, regulatory compliance, and the imperative for secure testing environments is expected to sustain high demand for synthetic test data solutions throughout the forecast period.




    From a regional perspective, North America and Europe currently dominate the Synthetic ISO 20022 Test Data Generation market, driven by early adoption of ISO 20022 standards, a mature financial services sector, and proactive regulatory frameworks. The Asia Pacific region is emerging as a high-growth market, propelled by rapid digitalization of banking services, expanding fintech ecosystems, and increasing cross-border transactions. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a lower base, as regional financial institutions modernize their payment infrastructures and align with global messaging standards. Regional disparities in regulatory timelines, technological maturity, and market readiness are expected to shape the competitive landscape and growth trajectories in the coming years.



  18. o

    Nominal and adversarial synthetic PMU data for standard IEEE test systems

    • osti.gov
    Updated Jun 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific Northwest National Laboratory 2 (2021). Nominal and adversarial synthetic PMU data for standard IEEE test systems [Dataset]. http://doi.org/10.25584/DataHub/1788186
    Explore at:
    Dataset updated
    Jun 15, 2021
    Dataset provided by
    US
    Pacific Northwest National Laboratory 2
    PNNL
    Description

    GridSTAGE (Spatio-Temporal Adversarial scenario GEneration) is a framework for the simulation of adversarial scenarios and the generation of multivariate spatio-temporal data in cyber-physical systems. GridSTAGE is developed based on Matlab and leverages Power System Toolbox (PST) where the evolution of the power network is governed by nonlinear differential equations. Using GridSTAGE, one can create several event scenarios that correspond to several operating states of the power network by enabling or disabling any of the following: faults, AGC control, PSS control, exciter control, load changes, generation changes, and different types of cyber-attacks. Standard IEEE bus system data is used to define the power system environment. GridSTAGE emulates the data from PMU and SCADA sensors. The rate of frequency and location of the sensors can be adjusted as well. Detailed instructions on generating data scenarios with different system topologies, attack characteristics, load characteristics, sensor configuration, control parameters are available in the Github repository - https://github.com/pnnl/GridSTAGE. There is no existing adversarial data-generation framework that can incorporate several attack characteristics and yield adversarial PMU data. The GridSTAGE framework currently supports simulation of False Data Injection attacks (such as a ramp, step, random, trapezoidal, multiplicative, replay, freezing) and Denial of Service attacks (such as time-delay, packet-loss) on PMU data. Furthermore, it supports generating spatio-temporal time-series data corresponding to several random load changes across the network or corresponding to several generation changes. A Koopman mode decomposition (KMD) based algorithm to detect and identify the false data attacks in real-time is proposed in https://ieeexplore.ieee.org/document/9303022. Machine learning-based predictive models are developed to capture the dynamics of the underlying power system with a high level of accuracy under various operating conditions for IEEE 68 bus system. The corresponding machine learning models are available at https://github.com/pnnl/grid_prediction.

  19. Automated Cryptographic Validation Test System Generators and Validators

    • catalog.data.gov
    • data.nist.gov
    • +1more
    Updated Jul 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2022). Automated Cryptographic Validation Test System Generators and Validators [Dataset]. https://catalog.data.gov/dataset/automated-cryptographic-validation-test-system-generators-and-validators
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    This is a program that takes in a description of a cryptographic algorithm implementation's capabilities, and generates test vectors to ensure the implementation conforms to the standard. After generating the test vectors, the program also validates the correctness of the responses from the user.

  20. SVG Code Generation Sample Training Data

    • kaggle.com
    zip
    Updated May 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vinothkumar Sekar (2025). SVG Code Generation Sample Training Data [Dataset]. https://www.kaggle.com/datasets/vinothkumarsekar89/svg-generation-sample-training-data
    Explore at:
    zip(193477 bytes)Available download formats
    Dataset updated
    May 3, 2025
    Authors
    Vinothkumar Sekar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This training data was generated using GPT-4o as part of the 'Drawing with LLM' competition (https://www.kaggle.com/competitions/drawing-with-llms). It can be used to fine-tune small language models for the competition or serve as an augmentation dataset alongside other data sources.

    The dataset is generated in two steps using the GPT-4o model. - In the first step, topic descriptions relevant to the competition are generated using a specific prompt. By running this prompt multiple times, over 3,000 descriptions were collected.

     
    prompt=f""" I am participating in an SVG code generation competition.
      
       The competition involves generating SVG images based on short textual descriptions of everyday objects and scenes, spanning a wide range of categories. The key guidelines are as follows:
      
       - Descriptions are generic and do not contain brand names, trademarks, or personal names.
       - No descriptions include people, even in generic terms.
       - Descriptions are concise—each is no more than 200 characters, with an average length of about 50 characters.
       - Categories cover various domains, with some overlap between public and private test sets.
      
       To train a small LLM model, I am preparing a synthetic dataset. Could you generate 100 unique topics aligned with the competition style?
      
       Requirements:
       - Each topic should range between **20 and 200 characters**, with an **average around 60 characters**.
       - Ensure **diversity and creativity** across topics.
       - **50% of the topics** should come from the categories of **landscapes**, **abstract art**, and **fashion**.
       - Avoid duplication or overly similar phrasing.
      
       Example topics:
                     a purple forest at dusk, gray wool coat with a faux fur collar, a lighthouse overlooking the ocean, burgundy corduroy, pants with patch pockets and silver buttons, orange corduroy overalls, a purple silk scarf with tassel trim, a green lagoon under a cloudy sky, crimson rectangles forming a chaotic grid,  purple pyramids spiraling around a bronze cone, magenta trapezoids layered on a translucent silver sheet,  a snowy plain, black and white checkered pants,  a starlit night over snow-covered peaks, khaki triangles and azure crescents,  a maroon dodecahedron interwoven with teal threads.
      
       Please return the 100 topics in csv format.
       """
     
    • In the second step, SVG code is generated by prompting the GPT-4o model. The following prompt is used to query the model to generate svg.
     
      prompt = f"""
          Generate SVG code to visually represent the following text description, while respecting the given constraints.
          
          Allowed Elements: `svg`, `path`, `circle`, `rect`, `ellipse`, `line`, `polyline`, `polygon`, `g`, `linearGradient`, `radialGradient`, `stop`, `defs`
          Allowed Attributes: `viewBox`, `width`, `height`, `fill`, `stroke`, `stroke-width`, `d`, `cx`, `cy`, `r`, `x`, `y`, `rx`, `ry`, `x1`, `y1`, `x2`, `y2`, `points`, `transform`, `opacity`
          
    
          Please ensure that the generated SVG code is well-formed, valid, and strictly adheres to these constraints. 
          Focus on a clear and concise representation of the input description within the given limitations. 
          Always give the complete SVG code with nothing omitted. Never use an ellipsis.
    
          The code is scored based on similarity to the description, Visual question anwering and aesthetic components.
          Please generate a detailed svg code accordingly.
    
          input description: {text}
          """
     

    The raw SVG output is then cleaned and sanitized using a competition-specific sanitization class. After that, the cleaned SVG is scored using the SigLIP model to evaluate text-to-SVG similarity. Only SVGs with a score above 0.5 are included in the dataset. On average, out of three SVG generations, only one meets the quality threshold after the cleaning, sanitization, and scoring process.

    A dataset with ~50,000 samples for SVG code generation is publicly available at: https://huggingface.co/datasets/vinoku89/svg-code-generation

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Francisco Theodoro Arantes Florencio (2025). test-data-generator [Dataset]. https://huggingface.co/datasets/franciscoflorencio/test-data-generator

Data from: test-data-generator

franciscoflorencio/test-data-generator

Related Article
Explore at:
Dataset updated
Oct 21, 2025
Authors
Francisco Theodoro Arantes Florencio
Description

Dataset Card for test-data-generator

This dataset has been created with distilabel.

  Dataset Summary

This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/franciscoflorencio/test-data-generator/raw/main/pipeline.yaml"

or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/franciscoflorencio/test-data-generator.

Search
Clear search
Close search
Google apps
Main menu