Facebook
TwitterThis ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.
Facebook
TwitterRaczynski, K., Grala, K., & Cartwright, J. H. (2024). GEO Tutorial: Work Automation in QGIS Using Model Builder. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 9Publication Date: 11/2024This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.
Facebook
TwitterThe Habitat Suitability Analysis was built using ArcGIS Pro's ModelBuilder tool. This program does not have an option to save the model's inputs as a relative file path. As a result, the model may not run because it's searching for each layer's original file path. If this happens, we have included a file titled Habitat_Suitability_Analysis_Script that outlines the processes we used to build the model. This submission contains three folders and three supplemental files. The folder titled "Data" includes all of the raw data and data input in the Habitat Suitability Analysis. The folder titled "Scripts" describes the steps to build the Habitat Suitability Analysis model in ArcGIS Pro. The Results folder contains the Habitat Suitability Analysis model and the data that was input into the model. The supplemental files are a file titled "Dryad_Folder_Contents" which describes the contents of every folder in this submission, and a file titled "Habitat_Suitability_Analysis_README" which contain...
Facebook
TwitterThis permit conversion tool converts ePermit .xls files to quarter-quarter or lat/long locations. Also included is a public lands survey geodatabase necessary to run the POU tool. This Model Builder toolset is available for ArcGIS 10.1-5. The March 2018 update provided here tests for field types and processes the fields accordingly.
Facebook
TwitterPortions of the world's interior, such as central Asia are extremely secluded from the ocean and are more than 2,000 km from the nearest coast. Distance to coast can be used in asset management and modeling project costs. Phenomenon Mapped: Distance to coastUnits: KilometersCell Size: 655.9259912 metersSource Type: DiscretePixel Type: Signed integerSpatial Reference: World Equidistant CylindricalMosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: 2015ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Distance to Coast layer was calculated by Esri using the Euclidean Distance Tool in ArcMap and the Esri Country Boundaries layer.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – kilometers to miles, Unit Conversion - kilometers to nautical miles, Cartographic Renderer, and Classified Renderer see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Facebook
TwitterThis service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at http://goto.arcgisonline.com/earthobs2/REMSS_SeaSurfaceTempSea Surface Temperature is a key climate and weather measurement used for weather prediction, ocean forecasts, tropical cyclone forecasts, and in coastal applications such as fisheries, pollution monitoring and tourism. El Niño and La Niña are two examples of climate events which are forecast through the use of sea surface temperature maps. The Naval Oceanographic Office sea surface temperature dataset is calculated from satellite-based microwave and infrared imagery. These data are optimally interpolated to provide a daily, global map of the midday (12:00 pm) sea surface temperature. Learn more about the source data. Phenomenon Mapped: Sea Surface TemperatureUnits: Degrees CelsiusTime Interval: DailyTime Extent: 2008/04/01 12:00:00 UTC to presentCell Size: 11 kmSource Type: ContinuousPixel Type: Floating PointData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global OceansSource: Naval Oceanographic OfficeUpdate Cycle: SporadicArcGIS Server URL: http://earthobs2.arcgis.com/arcgisTime: This is a time-enabled layer. It shows the average sea surface temperature during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the average of all days in the time extent. Minimum temporal resolution is one day; maximum is one month.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder. Units are in degrees Celsius, and there is a processing template to convert pixels to Fahrenheit. See this Esri blog post for more information on how to use this layer in your analysis. Do not use this layer for analysis while the Cartographic Renderer processing template is applied.This layer is part of the Living Atlas of the World that provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterLandforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines. Dataset SummaryPhenomenon Mapped: LandformsGeographic Extent: GlobalProjection: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereUnits: MetersCell Size: 231.91560581932 metersPixel Depth: 8-bit unsigned integerAnalysis: Restricted single source analysis. Maximum size of analysis is 30,000 x 30,000 pixels.Source: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/ In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS. The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plains Smooth plains with some local relief Irregular plains with moderate relief Irregular plains with low hills Scattered moderate hills Scattered high hills Scattered low mountains Scattered high mountains Moderate hills High hills Tablelands with moderate relief Tablelands with considerable relief Tablelands with high relief Tablelands with very high relief Low mountains High mountains To produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain"s texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class. The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them: What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks. The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group. The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Facebook
TwitterOur Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.
Facebook
TwitterRetirement Notice: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.Sea Surface Temperature is a key climate and weather measurement used for weather prediction, ocean forecasts, tropical cyclone forecasts, and in coastal applications such as fisheries, pollution monitoring and tourism. El Niño and La Niña are two examples of climate events which are forecast through the use of sea surface temperature maps. The Naval Oceanographic Office sea surface temperature dataset is calculated from satellite-based microwave and infrared imagery. These data are optimally interpolated to provide a daily, global map of the midday (12:00 pm) sea surface temperature. Learn more about the source data. Phenomenon Mapped: Sea Surface TemperatureUnits: Degrees CelsiusTime Interval: Daily Time Extent: 2008/04/01 12:00:00 UTC to presentCell Size: 11 kmSource Type: ContinuousPixel Type: Floating PointData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global OceansSource: Naval Oceanographic OfficeArcGIS Server URL: https://earthobs2.arcgis.com/arcgis Time: This is a time-enabled layer. It shows the average sea surface temperature during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the average of all days in the time extent. Minimum temporal resolution is one day; maximum is one month. What can you do with this layer? Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop. Analysis: This layer can be used as an input to geoprocessing tools and model builder. Units are in degrees Celsius, and there is a processing template to convert pixels to Fahrenheit. Do not use this layer for analysis while the Cartographic Renderer processing template is applied.
Facebook
TwitterNeed to be able to automate the available child care facilities for the Arkansas Dept of Human Services to keep their list of facilities up to date. Eventually we would like to use model builder and python to avoid any human intervention, but in the meantime we can get by with just replacing the data set instead of totally rebuilding the symbology with each data update.
Facebook
TwitterThis layer is subset of World Ecological Facets Landform Classes Image Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Facebook
TwitterMarine life have certain thresholds for temperature that they can live in. For instance, deep-water corals have been recorded in temperatures of -1⁰C. Seafloor temperatures generally decrease with increasing depth. Phenomenon Mapped: Seafloor temperatureUnits: Degrees CelsiusCell Size: 30 arc seconds, approximately 1 kmSource Type: DiscretePixel Type: Signed integerSpatial Reference: GCS_WGS_1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global oceansSource: Marine Conservation Institute (MCI)Citation: Boyer TP, Levitus S, Garcia HE, Locamini RA, Stephens C, et al. (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. International Journal of Climatology 25: 931–945.Publication Date: 2005ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Marine Conservation Institute used this dataset as an input to a predictive habitat model documented in the publication Global Habitat Suitability for Framework-Forming Cold-Water Corals.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – Celsius to Fahrenheit, Unit Conversion – Celsius to Kelvin, and Cartographic Renderer - see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Facebook
TwitterOcean depth plays an important role in the distribution and abundance of living organisms and has important implications for shipping and offshore development projects such as wind power and oil extraction.Phenomenon Mapped: Seafloor depth, bathymetryUnits: Meters below sea levelCell Size: 30 arc seconds, approximately 1 kmSource Type: DiscretePixel Type: Signed integerSpatial Reference: GCS_WGS_1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global oceansSource: Marine Conservation Institute (MCI)Citation: Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, et al. (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy 32: 355–371.Publication Date: 2009ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Marine Conservation Institute used this dataset as an input to a predictive habitat model documented in the publication Global Habitat Suitability for Framework-Forming Cold-Water Corals.The source data is available from the Scripps Institution of Oceanography Satellite Geodesy Webpage.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – meters to feet, Cartographic Renderer, Aspect, Slope, and Hillshade - see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is the global urban boundary of 222 scenarios combined by different population data sets, population density and population size thresholds, and the GIS model builder for calculating these data. See the README file for details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is the global urban boundary of 222 scenarios combined by different population data sets, population density and population size thresholds, and the GIS model builder for calculating these data. See the README file for details.
Facebook
TwitterIncludes settings for a CPI (Crop Production Index) Generation toolbox and instructions on how to alter it to be usable for your county.This documentation assumes the user has a basic understanding of ArcGIS, its tools, and its data structure, Model Builder. Arcade and Python Scripting used here will be covered in the documentation.
Facebook
TwitterPortions of the world's oceans are extremely remote including areas in the South Pacific that are more the 2,500 km from the nearest land. Distance from shore can be used in asset management, modeling project costs, and as an index of human influence. Phenomenon Mapped: Distance from shoreUnits: KilometersCell Size: 655.9259912 metersSource Type: DiscretePixel Type: Signed integerSpatial Reference: World Equidistant CylindricalMosaic Projection: Web Mercator Auxiliary SphereExtent: Global oceansSource: EsriPublication Date: 2015ArcGIS Server URL: https://oceans2.arcgis.com/arcgis/The Distance from Shore layer was calculated by Esri using the Euclidean Distance Tool in ArcMap and the Esri Country Boundaries layer.What can you do with this layer?Visualization: This layer can be used for visualization online in web maps and in ArcGIS Desktop.Analysis: This layer can be used as an input to geoprocessing tools and model builder.Raster Functions: Unit Conversion – kilometers to miles, Unit Conversion - kilometers to nautical miles, Cartographic Renderer, and Classified Renderer see this blog for more information.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps, and apps.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Facebook
TwitterThe purpose of the Tool is to use CPI, CER (Crop Equivalency Rating) or NCCPI (National Commodity Crop Productivity Index) to assess tax values accurately and fairly, regarding tillable acres of land. The steps in this document will focus solely on CPI values, but can be modified to use CER or NCCPI data. This project was created by counties for counties to use as a no cost solution for assessing tax values to tillable acres.This documentation assumes the user has a basic understanding of ArcGIS, its tools, and its data structure, Model Builder, and basic Arcade and Python Scripting.
Facebook
TwitterThis ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.