48 datasets found
  1. High-Resolution Radar Imagery, Digital Elevation Models, and Related GIS...

    • data.nasa.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). High-Resolution Radar Imagery, Digital Elevation Models, and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://data.nasa.gov/dataset/high-resolution-radar-imagery-digital-elevation-models-and-related-gis-layers-for-barrow-a
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    Utqiagvik, Alaska, United States
    Description

    This product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.

  2. d

    Reduced-Resolution Radar Imagery, Digital Elevation Models, and Related GIS...

    • catalog.data.gov
    • datasets.ai
    • +5more
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSIDC (2025). Reduced-Resolution Radar Imagery, Digital Elevation Models, and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://catalog.data.gov/dataset/reduced-resolution-radar-imagery-digital-elevation-models-and-related-gis-layers-for-barro
    Explore at:
    Dataset updated
    Aug 22, 2025
    Dataset provided by
    NSIDC
    Area covered
    Utqiagvik, Alaska, United States
    Description

    This product set contains reduced-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of an Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). The DSM and DTM data sets (20 m resolution) are provided in floating-point binary format with header and projection files. The ORRI mosaic (5 m resolution) is available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are available via FTP and CD-ROM.

  3. d

    Database of Geographic Information: Hill shade, of the 1:250000 scale...

    • search.dataone.org
    • portal.edirepository.org
    Updated Oct 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USGS (2013). Database of Geographic Information: Hill shade, of the 1:250000 scale Digital Elevation Model of Arizona [Dataset]. https://search.dataone.org/view/knb-lter-cap.143.8
    Explore at:
    Dataset updated
    Oct 4, 2013
    Dataset provided by
    LTER Network Member Node
    Authors
    USGS
    Time period covered
    Jan 1, 2000
    Area covered
    Description

    This data set is a hill shade, of the 1:250000 scale Digital Elevation Model of Arizona. Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a regular array of elevations cast on a designated coordinate projection system. The DEM data are stored as a series of profiles in which the spacing of the elevations along and between each profile is in regular whole number intervals. The normal orientation of data is by columns and rows. Each column contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A-record), followed by a series of profile records (B-records) each of which include a short B-record header followed by a series of ASCII integer elevations per each profile. The last physical record of the DEM is an accuracy record (C-record). A 30-minute DEM (2- by 2-arc second data spacing) consists of four 15-by 15-minute DEM blocks. Two 30-minute DEM's provide the same coverage as a standard USGS 30- by 60-minute quadrangle. Saleable units are 30- by 30-minute blocks, that is, four 15- by 15-minute DEM's representing one half of a 1:100,000-scale map.

  4. Modeling Fence Location and Density at a Regional Scale for Use in Wildlife...

    • plos.figshare.com
    docx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erin E. Poor; Andrew Jakes; Colby Loucks; Mike Suitor (2023). Modeling Fence Location and Density at a Regional Scale for Use in Wildlife Management [Dataset]. http://doi.org/10.1371/journal.pone.0083912
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Erin E. Poor; Andrew Jakes; Colby Loucks; Mike Suitor
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Barbed and woven wire fences, common structures across western North America, act as impediments to wildlife movements. In particular, fencing influences pronghorn (Antilocapra americana) daily and seasonal movements, as well as modifying habitat selection. Because of fencing's impacts to pronghorn and other wildlife, it is a potentially important factor in both wildlife movement and habitat selection models. At this time, no geospatial fencing data is available at regional scales. Consequently, we constructed a regional fence model using a series of land tenure assumptions for the Hi-Line region of northern Montana – an area consisting of 13 counties over 103,400 km2. Randomized 3.2 km long transects (n = 738) on both paved and unpaved roads were driven to collect information on habitat, fence densities and fence type. Using GIS, we constructed a fence location and a density model incorporating ownership, size, neighboring parcels, township boundaries and roads. Local knowledge of land ownership and land use assisted in improving the final models. We predict there is greater than 263,300 km of fencing in the Hi-Line region, with a maximum density of 6.8 km of fencing per km2 and mean density of 2.4 km of fencing per km2. Using field data to assess model accuracy, Cohen's Kappa was measured at 0.40. On-the-ground fence modification or removal could be prioritized by identifying high fence densities in critical wildlife areas such as pronghorn migratory pathways or sage grouse lekking habitat. Such novel fence data can assist wildlife and land managers to assess effects of anthropogenic features to wildlife at various scales; which in turn may help conserve declining grassland species and overall ecological functionality.

  5. Towards the reproducibility in soil erosion modeling: a new Pan-European...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claudio Bosco; Daniele de Rigo; Olivier Dewitte; Luca Montanarella (2023). Towards the reproducibility in soil erosion modeling: a new Pan-European soil erosion map [Dataset]. http://doi.org/10.6084/m9.figshare.936872.v5
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Claudio Bosco; Daniele de Rigo; Olivier Dewitte; Luca Montanarella
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the authors’ version of the work. It is based on a poster presented at the Wageningen Conference on Applied Soil Science, http://www.wageningensoilmeeting.wur.nl/UK/ Cite as: Bosco, C., de Rigo, D., Dewitte, O., Montanarella, L., 2011. Towards the reproducibility in soil erosion modeling: a new Pan-European soil erosion map. Wageningen Conference on Applied Soil Science “Soil Science in a Changing World”, 18 - 22 September 2011, Wageningen, The Netherlands. Author’s version DOI:10.6084/m9.figshare.936872 arXiv:1402.3847

    Towards the reproducibility in soil erosion modeling:a new Pan-European soil erosion map

    Claudio Bosco ¹, Daniele de Rigo ¹ ² , Olivier Dewitte ¹, Luca Montanarella ¹ ¹ European Commission, Joint Research Centre, Institute for Environment and Sustainability,Via E. Fermi 2749, I-21027 Ispra (VA), Italy² Politecnico di Milano, Dipartimento di Elettronica e Informazione,Via Ponzio 34/5, I-20133 Milano, Italy

    Soil erosion by water is a widespread phenomenon throughout Europe and has the potentiality, with his on-site and off-site effects, to affect water quality, food security and floods. Despite the implementation of numerous and different models for estimating soil erosion by water in Europe, there is still a lack of harmonization of assessment methodologies. Often, different approaches result in soil erosion rates significantly different. Even when the same model is applied to the same region the results may differ. This can be due to the way the model is implemented (i.e. with the selection of different algorithms when available) and/or to the use of datasets having different resolution or accuracy. Scientific computation is emerging as one of the central topic of the scientific method, for overcoming these problems there is thus the necessity to develop reproducible computational method where codes and data are available. The present study illustrates this approach. Using only public available datasets, we applied the Revised Universal Soil loss Equation (RUSLE) to locate the most sensitive areas to soil erosion by water in Europe. A significant effort was made for selecting the better simplified equations to be used when a strict application of the RUSLE model is not possible. In particular for the computation of the Rainfall Erosivity factor (R) the reproducible research paradigm was applied. The calculation of the R factor was implemented using public datasets and the GNU R language. An easily reproducible validation procedure based on measured precipitation time series was applied using MATLAB language. Designing the computational modelling architecture with the aim to ease as much as possible the future reuse of the model in analysing climate change scenarios is also a challenging goal of the research.

    References [1] Rusco, E., Montanarella, L., Bosco, C., 2008. Soil erosion: a main threats to the soils in Europe. In: Tóth, G., Montanarella, L., Rusco, E. (Eds.), Threats to Soil Quality in Europe. No. EUR 23438 EN in EUR - Scientific and Technical Research series. Office for Official Publications of the European Communities, pp. 37-45 [2] Casagrandi, R. and Guariso, G., 2009. Impact of ICT in Environmental Sciences: A citation analysis 1990-2007. Environmental Modelling & Software 24 (7), 865-871. DOI:10.1016/j.envsoft.2008.11.013 [3] Stallman, R. M., 2005. Free community science and the free development of science. PLoS Med 2 (2), e47+. DOI:10.1371/journal.pmed.0020047 [4] Waldrop, M. M., 2008. Science 2.0. Scientific American 298 (5), 68-73. DOI:10.1038/scientificamerican0508-68 [5] Heineke, H. J., Eckelmann, W., Thomasson, A. J., Jones, R. J. A., Montanarella, L., and Buckley, B., 1998. Land Information Systems: Developments for planning the sustainable use of land resources. Office for Official Publications of the European Communities, Luxembourg. EUR 17729 EN [6] Farr, T. G., Rosen, P A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Review of Geophysics 45, RG2004, DOI:10.1029/2005RG000183 [7] Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M., 2008. A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysical Research 113, (D20) D20119+ DOI:10.1029/2008jd010201 [8] Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook 703. US Dept Agric., Agr. Handbook, 703 [9] Bosco, C., Rusco, E., Montanarella, L., Panagos, P., 2009. Soil erosion in the alpine area: risk assessment and climate change. Studi Trentini di scienze naturali 85, 119-125 [10] Bosco, C., Rusco, E., Montanarella, L., Oliveri, S., 2008. Soil erosion risk assessment in the alpine area according to the IPCC scenarios. In: Tóth, G., Montanarella, L., Rusco, E. (Eds.), Threats to Soil Quality in Europe. No. EUR 23438 EN in EUR - Scientific and Technical Research series. Office for Official Publications of the European Communities, pp. 47-58 [11] de Rigo, D. and Bosco, C., 2011. Architecture of a Pan-European Framework for Integrated Soil Water Erosion Assessment. IFIP Advances in Information and Communication Technology 359 (34), 310-31. DOI:10.1007/978-3-642-22285-6_34 [12] Bosco, C., de Rigo, D., Dewitte, O., and Montanarella, L., 2011. Towards a Reproducible Pan-European Soil Erosion Risk Assessment - RUSLE. Geophys. Res. Abstr. 13, 3351 [13] Bollinne, A., Laurant, A., and Boon, W., 1979. L’érosivité des précipitations a Florennes. Révision de la carte des isohyétes et de la carte d’erosivite de la Belgique. Bulletin de la Société géographique de Liége 15, 77-99 [14] Ferro, V., Porto, P and Yu, B., 1999. A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia. Hydrolog. Sci. J. 44 (1), 3-24. DOI:10.1080/02626669909492199 [15] de Santos Loureiro, N. S. and de Azevedo Coutinho, M., 2001. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J. Hydrol. 250, 12-18. DOI:10.1016/S0022-1694(01)00387-0 [16] Rogler, H., and Schwertmann, U., 1981. Erosivität der Niederschläge und Isoerodentkarte von Bayern (Rainfall erosivity and isoerodent map of Bavaria). Zeitschrift fur Kulturtechnik und Flurbereinigung 22, 99-112 [17] Nearing, M. A., 1997. A single, continuous function for slope steepness influence on soil loss. Soil Sci. Soc. Am. J. 61 (3), 917-919. DOI:10.2136/sssaj1997.03615995006100030029x [18] Morgan, R. P C., 2005. Soil Erosion and Conservation, 3rd ed. Blackwell Publ., Oxford, pp. 304 [19] Šúri, M., Cebecauer, T., Hofierka, J., Fulajtár, E., 2002. Erosion Assessment of Slovakia at regional scale using GIS. Ecology 21 (4), 404-422 [20] Cebecauer, T. and Hofierka, J., 2008. The consequences of land-cover changes on soil erosion distribution in Slovakia. Geomorphology 98, 187-198. DOI:10.1016/j.geomorph.2006.12.035 [21] Poesen, J., Torri, D., and Bunte, K., 1994. Effects of rock fragments on soil erosion by water at different spatial scales: a review. Catena 23, 141-166. DOI:10.1016/0341-8162(94)90058-2 [22] Wischmeier, W. H., 1959. A rainfall erosion index for a universal Soil-Loss Equation. Soil Sci. Soc. Amer. Proc. 23, 246-249 [23] Iverson, K. E., 1980. Notation as a tool of thought. Commun. ACM 23 (8), 444-465. DOI:10.1145/358896.358899 [24] Quarteroni, A., Saleri, F., 2006. Scientific Computing with MATLAB and Octave. Texts in Computational Science and Engineering. Milan, Springer-Verlag [25] The MathWorks, 2011. MATLAB. http://www.mathworks.com/help/techdoc/ref/ [26] Eaton, J. W., Bateman, D., and Hauberg, S., 2008. GNU Octave Manual Version 3. A high-level interactive language for numerical computations. Network Theory Limited, ISBN: 0-9546120-6-X [27] de Rigo, D., 2011. Semantic Array Programming with Mastrave - Introduction to Semantic Computational Modeling. The Mastrave project. http://mastrave.org/doc/MTV-1.012-1 [28] de Rigo, D., (exp.) 2012. Semantic array programming for environmental modelling: application of the Mastrave library. In prep. [29] Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P.: Modelling Soil Erosion at European Scale. Towards Harmonization and Reproducibility. In prep. [30] R Development Core Team, 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing. [31] Stallman, R. M., 2009. Viewpoint: Why “open source” misses the point of free software. Commun. ACM 52 (6), 31–33. DOI:10.1145/1516046.1516058 [32] de Rigo, D. 2011. Multi-dimensional weighted median: the module "wmedian" of the Mastrave modelling library. Mastrave project technical report. http://mastrave.org/doc/mtv_m/wmedian [33] Shakesby, R. A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105 (3-4), 71-100. DOI:10.1016/j.earscirev.2011.01.001 [34] Zuazo, V. H., Pleguezuelo, C. R., 2009. Soil-Erosion and runoff prevention by plant covers: A review. In: Lichtfouse, E., Navarrete, M., Debaeke, P Véronique, S., Alberola, C. (Eds.), Sustainable Agriculture. Springer Netherlands, pp. 785-811. DOI:10.1007/978-90-481-2666-8_48

  6. Elevation Models for Reproducible Evaluation of Terrain Representation -...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Dec 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick J. Kennelly; Patrick J. Kennelly; Tom Patterson; Bernhard Jenny; Bernhard Jenny; Daniel P. Huffman; Brooke E. Marston; Sarah Bell; Alexander M. Tait; Alexander M. Tait; Tom Patterson; Daniel P. Huffman; Brooke E. Marston; Sarah Bell (2020). Elevation Models for Reproducible Evaluation of Terrain Representation - Inventory of Renderings [Dataset]. http://doi.org/10.5281/zenodo.3937895
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Patrick J. Kennelly; Patrick J. Kennelly; Tom Patterson; Bernhard Jenny; Bernhard Jenny; Daniel P. Huffman; Brooke E. Marston; Sarah Bell; Alexander M. Tait; Alexander M. Tait; Tom Patterson; Daniel P. Huffman; Brooke E. Marston; Sarah Bell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is an inventory of 155 renderings from 78 publications on terrain visualization techniques. The renderings guided the selection of landform types in the elevation models that are proposed in the following article:

    Kennelly, P. J., Patterson, T., Jenny, B., Huffman, D. P., Marston, B. E., Bell, S. and Tait, A. M. (2021). Elevation models for reproducible evaluation of terrain representation. Cartography and Geographic Information Science, 48:1, 63–77. DOI: 10.1080/15230406.2020.1830856

    Visualization techniques include colored aspect, contour lines, hypsometric tints, plan oblique relief, relief shading, rock and scree representation, and spot heights. The inventory contains information about display scale of the sample renderings, landform types, cell size, and geographic location of the digital elevation models. Also inventoried are how authors evaluated their renderings, how scale was indicated on the renderings, and whether the cell size and source of elevation data was included.

    The inventory is formatted as a single table in CSV UTF-8 and MS Excel .xlsx formats. Papers are grouped by visualization type; attributes of each rendering are stored on a single row.

  7. Toward open science at the European scale: Geospatial Semantic Array...

    • figshare.com
    • search.datacite.org
    pdf
    Updated Oct 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniele de Rigo; Paolo Corti; Giovanni Caudullo; Daniel McInerney; Margherita Di Leo; Jesús San-Miguel-Ayanz (2016). Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling [Dataset]. http://doi.org/10.6084/m9.figshare.155703.v5
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 18, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Daniele de Rigo; Paolo Corti; Giovanni Caudullo; Daniel McInerney; Margherita Di Leo; Jesús San-Miguel-Ayanz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San Miguel-Ayanz, J., 2013. Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling. Geophysical Research Abstracts 15, 13245+. ISSN 1607-7962, European Geosciences Union (EGU).

    This is the authors’ version of the work. The definitive version is published in the Vol. 15 of Geophysical Research Abstracts (ISSN 1607-7962) and presented at the European Geosciences Union (EGU) General Assembly 2013, Vienna, Austria, 07-12 April 2013http://www.egu2013.eu/

    Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling

    Daniele de Rigo ¹ ², Paolo Corti ¹ ³, Giovanni Caudullo ¹, Daniel McInerney ¹, Margherita Di Leo ¹, Jesús San-Miguel-Ayanz ¹ ¹ European Commission, Joint Research Centre, Institute for Environment and Sustainability,Via E. Fermi 2749, I-21027 Ispra (VA), Italy ² Politecnico di Milano, Dipartimento di Elettronica e Informazione,Via Ponzio 34/5, I-20133 Milano, Italy ³ United Nations World Food Programme,Via C.G.Viola 68 Parco dei Medici, I-00148 Rome, Italy

    Excerpt: Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty. This is characteristic of science-based support for environmental policy at European scale, and key aspects have also long been investigated by European Commission transnational research. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making. In WSTMe, the characteristic heterogeneity of available spatial information and complexity of the required data-transformation modelling (D-TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility. This challenging shift toward open data and reproducible research (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors within the impressively growing interconnection among domain-specific computational models and frameworks. Concise array-based mathematical formulation and implementation (with array programming tools) have proved helpful in supporting and mitigating the complexity of WSTMe when complemented with generalized modularization and terse array-oriented semantic constraints. This defines the paradigm of Semantic Array Programming (SemAP) where semantic transparency also implies free software use (although black-boxes - e.g. legacy code - might easily be semantically interfaced). A new approach for WSTMe has emerged by formalizing unorganized best practices and experience-driven informal patterns. The approach introduces a lightweight (non-intrusive) integration of SemAP and geospatial tools - called Geospatial Semantic Array Programming (GeoSemAP). GeoSemAP exploits the joint semantics provided by SemAP and geospatial tools to split a complex D-TM into logical blocks which are easier to check by means of mathematical array-based and geospatial constraints. Those constraints take the form of precondition, invariant and postcondition semantic checks. This way, even complex WSTMe may be described as the composition of simpler GeoSemAP blocks. GeoSemAP allows intermediate data and information layers to be more easily and formally semantically described so as to increase fault-tolerance, transparency and reproducibility of WSTMe. This might also help to better communicate part of the policy-relevant knowledge, often diffcult to transfer from technical WSTMe to the science-policy interface. [...]

  8. d

    Data from: GIS Features of the Geospatial Fabric for National Hydrologic...

    • search.dataone.org
    • data.usgs.gov
    • +2more
    Updated Apr 13, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roland J. Viger, PhD., US Geological Survey, Research Geographer; Andrew Bock, US Geological Survey, Hydrologist (2017). GIS Features of the Geospatial Fabric for National Hydrologic Modeling [Dataset]. https://search.dataone.org/view/1e9e2db9-5ec7-47e0-82ef-aa3c52d629db
    Explore at:
    Dataset updated
    Apr 13, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Roland J. Viger, PhD., US Geological Survey, Research Geographer; Andrew Bock, US Geological Survey, Hydrologist
    Area covered
    Variables measured
    FTYPE, Shape, hru_x, hru_y, INC_DA, POI_ID, hru_id, region, seg_id, FLOWDIR, and 35 more
    Description

    The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the

  9. Digital Elevation Model (AZ 250,000:1)

    • search.dataone.org
    Updated Oct 4, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USGS (2013). Digital Elevation Model (AZ 250,000:1) [Dataset]. https://search.dataone.org/view/knb-lter-cap.28.9
    Explore at:
    Dataset updated
    Oct 4, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    USGS
    Time period covered
    Jan 1, 1998
    Area covered
    Description

    1:250000 scale Digital Elevation Model of Arizona. Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a regular array of elevations cast on a designated coordinate projection system. The DEM data are stored as a series of profiles in which the spacing of the elevations along and between each profile is in regular whole number intervals. The normal orientation of data is by columns and rows. Each column contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A-record), followed by a series of profile records (B-records) each of which include a short B-record header followed by a series of ASCII integer elevations per each profile. The last physical record of the DEM is an accuracy record (C-record). A 30-minute DEM (2- by 2-arc second data spacing) consists of four 15-by 15-minute DEM blocks. Two 30-minute DEM's provide the same coverage as a standard USGS 30- by 60-minute quadrangle. Saleable units are 30- by 30-minute blocks, that is, four 15- by 15-minute DEM's representing one half of a 1:100,000-scale map.

  10. Tufted Puffin Predicted Habitat - CWHR B248 [ds2170]

    • data-cdfw.opendata.arcgis.com
    • data.ca.gov
    • +3more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Tufted Puffin Predicted Habitat - CWHR B248 [ds2170] [Dataset]. https://data-cdfw.opendata.arcgis.com/maps/34a33ea93e654b89b6c7c5fc853369c2
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  11. m

    Data for: Scaling up nature-based solutions for climate-change adaptation:...

    • data.mendeley.com
    Updated Dec 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chiara Cortinovis (2021). Data for: Scaling up nature-based solutions for climate-change adaptation: potential and benefits in three European cities [Dataset]. http://doi.org/10.17632/c9cjt57k2s.1
    Explore at:
    Dataset updated
    Dec 22, 2021
    Authors
    Chiara Cortinovis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    The dataset contains GIS data and JPEG maps of nature-based solution scenarios and related benefits in three case-study cities partners of the H2020 project Naturvation (https://naturvation.eu/): Barcelona (Spain), Malmö (Sweden), and Utrecht (the Netherlands). The data were produced as part of the research described in the article “Scaling up nature-based solutions for climate-change adaptation: potential and benefits in three European cities”, published in Urban Forestry & Urban Greening (doi:10.1016/j.ufug.2021.127450). The dataset is structured into three main folders, one for each city. Each folder contains six raster maps of land cover under different scenarios, a vector map with the results of the assessment of the selected benefits at the local level, and a sub-folder with the benefit maps printed in JPEG format. The six scenarios include the current condition (Baseline - LC); four scenarios that simulates the full-scale implementation of one specific type of nature-based solutions: installing green roofs (GreenRoofs - GR), de-sealing parking areas (ParkingAreas - PA), enhancing vegetation in urban parks (Parks - PK), and planting street trees (StreetTrees - ST); and a scenario considering the contemporaneous implementation of all four types of nature-based solutions (GreenDream - GD). The simulated full-scale implementation is based on space availability and technical feasibility: other constraints to the implementation of nature-based solutions are not considered. The five benefits assessed include two benefits related to climate change adaptation, i.e. heat mitigation (HM) and runoff reduction (RR), and three co-benefits, namely carbon storage (CS), biodiversity potential (BP), and overall greenness (OG). The vector maps and related JPEG prints show the results of the assessment at the block level. Blocks are based on a modified version of Urban Atlas polygons obtained by removing streets and railroads. Maps have coordinate reference system UTRS89 - LAEA Europe (EPSG:3035) and cover the whole administrative territory of the respective city, excluding the sea. Raster maps are provided in Geotiff format, UInt 16, with a resolution of 1 m. The legend includes eight land cover classes: water (0), trees (1), low vegetation (2), impervious (4), agriculture (5), buildings (10), green roofs (11), vegetation over water (13), permeable parking areas (14). The attribute tables of the vector maps store the value of the selected benefits for each block, together with the links to the original Urban Atlas polygons. Scenarios and benefits are identified by their two-letter codes as reported above. The printed JPEG maps of benefits have a common legend, to allow for comparison between cities.

  12. c

    Barn Owl Predicted Habitat - CWHR B262 [ds2178]

    • gis.data.ca.gov
    • data.cnra.ca.gov
    • +3more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Barn Owl Predicted Habitat - CWHR B262 [ds2178] [Dataset]. https://gis.data.ca.gov/maps/1b567c95f3b34ff79dc15d1a1fdf290e
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlife
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  13. a

    A Complete First Course in Modern GIS 2C

    • storymaps-k12.hub.arcgis.com
    Updated Aug 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri K12 GIS Organization (2021). A Complete First Course in Modern GIS 2C [Dataset]. https://storymaps-k12.hub.arcgis.com/datasets/a-complete-first-course-in-modern-gis-2c
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset authored and provided by
    Esri K12 GIS Organization
    Description

    Summary: Week 2: QuizStorymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) K: Standard K-ESS3-2 - Earth and Human Activity - Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weatherGrade level(s) 1: Standard 1-LS1-1 - From Molecules to Organisms: Structures and Processes - Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needsGrade level(s) K-2: Standard K-2-ETS1-1 - Engineering Design - Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.Grade level(s) 3: Standard 3-PS2-3 - Motion and Stability: Forces and Interactions - Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each otherGrade level(s) 4: Standard 4-PS3-3 - Energy - Ask questions and predict outcomes about the changes in energy that occur when objects collideGrade level(s) 6-8: Standard MS-PS2-3 - Motion and Stability: Forces and Interactions - Ask questions about data to determine the factors that affect the strength of electric and magnetic forcesGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS1-4 - Earth’s Place in the Universe - Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old historyGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 6-8: Standard MS-ESS3-5 - Earth and Human Activity - Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past centuryGrade level(s) 9-12: Standard HS-PS1-3 - Matter and Its Interactions - Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particlesGrade level(s) 9-12: Standard HS-PS1-7 - Matter and Its Interactions - Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reactionGrade level(s) 9-12: Standard HS-PS1-8 - Matter and Its Interactions - Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.Grade level(s) 9-12: Standard HS-PS3-2 - Energy - Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).Grade level(s) 9-12: Standard HS-PS4-2 - Waves and Their Applications in Technologies for Information Transfer - Evaluate questions about the advantages of using digital transmission and storage of informationGrade level(s) 9-12: Standard HS-LS2-1 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scalesGrade level(s) 9-12: Standard HS-LS2-2 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scalesGrade level(s) 9-12: Standard HS-LS3-1 - Heredity: Inheritance and Variation of Traits - Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspringGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:questionscaleApproximate Flesch-Kincaid reading grade level: 9.8. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.

  14. g

    Towards Digital Twinning on the Web: Heterogeneous 3D Data Fusion Based on...

    • eleonasrepo.getmap.gr
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Towards Digital Twinning on the Web: Heterogeneous 3D Data Fusion Based on Open-Source Structure - Datasets - eLeonas Data Hub [Dataset]. https://eleonasrepo.getmap.gr/dataset/towards-digital-twinning-on-the-web-heterogeneous-3d-data-fusion-based-on-open-source-structure
    Explore at:
    Dataset updated
    Apr 29, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recent advances in Computer Science and the spread of internet connection have allowed specialists to virtualize complex environments on the web and offer further information with realistic exploration experiences. At the same time, the fruition of complex geospatial datasets (point clouds, Building Information Modelling (BIM) models, 2D and 3D models) on the web is still a challenge, because usually it involves the usage of different proprietary software solutions, and the input data need further simplification for computational effort reduction. Moreover, integrating geospatial datasets acquired in different ways with various sensors remains a challenge. An interesting question, in that respect, is how to integrate 3D information in a 3D GIS (Geographic Information System) environment and manage different scales of information in the same application. Integrating a multiscale level of information is currently the first step when it comes to digital twinning. It is needed to properly manage complex urban datasets in digital twins related to the management of the buildings (cadastral management, prevention of natural and anthropogenic hazards, structure monitoring, etc.). Therefore, the current research shows the development of a freely accessible 3D Web navigation model based on open-source technology that allows the visualization of heterogeneous complex geospatial datasets in the same virtual environment. This solution employs JavaScript libraries based on WebGL technology. The model is accessible through web browsers and does not need software installation from the user side. The case study is the new building of the University of Twente-Faculty of Geo-Information (ITC), located in Enschede (the Netherlands). The developed solution allows switching between heterogeneous datasets (point clouds, BIM, 2D and 3D models) at different scales and visualization (indoor first-person navigation, outdoor navigation, urban navigation). This solution could be employed by governmental stakeholders or the private sector to remotely visualize complex datasets on the web in a unique visualization, and take decisions only based on open-source solutions. Furthermore, this system can incorporate underground data or real-time sensor data from the IoT (Internet of Things) for digital twinning tasks.

  15. Herring Gull Predicted Habitat - CWHR B216 [ds2149]

    • hub.arcgis.com
    • data.ca.gov
    • +5more
    Updated Sep 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Herring Gull Predicted Habitat - CWHR B216 [ds2149] [Dataset]. https://hub.arcgis.com/maps/CDFW::herring-gull-predicted-habitat-cwhr-b216-ds2149/about
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  16. n

    SCAR Spatial Data Model and Feature Catalogue

    • access.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    Updated Jan 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). SCAR Spatial Data Model and Feature Catalogue [Dataset]. https://access.earthdata.nasa.gov/collections/C1214308527-AU_AADC
    Explore at:
    Dataset updated
    Jan 5, 2018
    Time period covered
    Aug 1, 2003 - Present
    Area covered
    Description

    The SCAR Spatial Data Model has been developed for Geoscience Standing Scientific Group (GSSG). It was presented to XXVII SCAR, 15-26 July 2002, in Shanghai, China.

    The Spatial Data Model is one of nine projects of the Geographic Information Program 2000-2002. The goal of this project is 'To provide a SCAR standard spatial data model for use in SCAR and national GIS databases.'

    Activities within this project include:

    1. Continue developing the SCAR Feature Catalogue and the SCAR Spatial Data Model
    2. Provide SCAR Feature Catalogue online
    3. Creation and incorporation of symbology
    4. Investigate metadata / data quality requirements
    5. Ensure compliance to ISO TC211 and OGC standards

    Source: http://www.geoscience.scar.org/geog/geog.htm#stds

    Spatial data are increasingly being available in digital form, managed in a GIS and distributed on the web. More data are being exchanged between nations/institutions and used by a variety of disciplines. Exchange of data and its multiple use makes it necessary to provide a standard framework. The Feature Catalogue is one component of the Spatial Data Model, that will provide the platform for creating understandable and accessible data to users. Care has been taken to monitor the utility of relevant emerging ISO TC211 standards.

    The Feature Catalogue provides a detailed description of the nature and the structure of GIS and map information. It follows ISO/DIS 19110, Geographic Information - Methodology for feature cataloguing. The Feature Catalogue can be used in its entirety, or in part. The Feature Catalogue is a dynamic document, that will evolve with use over time. Considerable effort has gone into ensuring that the Feature Catalogue is a unified and efficient tool that can be used with any GIS software and at any scale of geographic information.

    The structure includes data quality information, terminology, database types and attribute options that will apply to any GIS. The Feature Catalogue is stored in a database to enable any component of the information to be easily viewed, printed, downloaded and updated via the Web.

  17. Northern (Steller) Sea-Lion Predicted Habitat - CWHR M169 [ds2620]

    • gis.data.ca.gov
    • data.ca.gov
    • +5more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Northern (Steller) Sea-Lion Predicted Habitat - CWHR M169 [ds2620] [Dataset]. https://gis.data.ca.gov/maps/CDFW::northern-steller-sea-lion-predicted-habitat-cwhr-m169-ds2620/about
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  18. Long-Tailed Pocket Mouse Predicted Habitat - CWHR M091 [ds2546]

    • data-cdfw.opendata.arcgis.com
    • data.ca.gov
    • +4more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Long-Tailed Pocket Mouse Predicted Habitat - CWHR M091 [ds2546] [Dataset]. https://data-cdfw.opendata.arcgis.com/content/CDFW::long-tailed-pocket-mouse-predicted-habitat-cwhr-m091-ds2546
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  19. a

    Great Basin Pocket Mouse Predicted Habitat - CWHR M088 [ds2544]

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data.cnra.ca.gov
    • +5more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Great Basin Pocket Mouse Predicted Habitat - CWHR M088 [ds2544] [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/87793f2696c1444db58a967eaea666bf
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlife
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  20. California Pocket Mouse Predicted Habitat - CWHR M095 [ds2550]

    • gis.data.ca.gov
    • data.cnra.ca.gov
    • +6more
    Updated Sep 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). California Pocket Mouse Predicted Habitat - CWHR M095 [ds2550] [Dataset]. https://gis.data.ca.gov/maps/de7979793331450d98f3ab733dfc1884
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
nasa.gov (2025). High-Resolution Radar Imagery, Digital Elevation Models, and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://data.nasa.gov/dataset/high-resolution-radar-imagery-digital-elevation-models-and-related-gis-layers-for-barrow-a
Organization logo

High-Resolution Radar Imagery, Digital Elevation Models, and Related GIS Layers for Barrow, Alaska, USA, Version 1

Explore at:
Dataset updated
Mar 31, 2025
Dataset provided by
NASAhttp://nasa.gov/
Area covered
Utqiagvik, Alaska, United States
Description

This product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.

Search
Clear search
Close search
Google apps
Main menu