19 datasets found
  1. P

    ModelNet Dataset

    • paperswithcode.com
    Updated Jan 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhirong Wu; Shuran Song; Aditya Khosla; Fisher Yu; Linguang Zhang; Xiaoou Tang; Jianxiong Xiao (2023). ModelNet Dataset [Dataset]. https://paperswithcode.com/dataset/modelnet
    Explore at:
    Dataset updated
    Jan 29, 2023
    Authors
    Zhirong Wu; Shuran Song; Aditya Khosla; Fisher Yu; Linguang Zhang; Xiaoou Tang; Jianxiong Xiao
    Description

    The ModelNet40 dataset contains synthetic object point clouds. As the most widely used benchmark for point cloud analysis, ModelNet40 is popular because of its various categories, clean shapes, well-constructed dataset, etc. The original ModelNet40 consists of 12,311 CAD-generated meshes in 40 categories (such as airplane, car, plant, lamp), of which 9,843 are used for training while the rest 2,468 are reserved for testing. The corresponding point cloud data points are uniformly sampled from the mesh surfaces, and then further preprocessed by moving to the origin and scaling into a unit sphere.

  2. ModelNet40-C

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Feb 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiachen Sun; Qingzhao Zhang; Bhavya Kailkhura; Zhiding Yu; Chaowei Xiao; Z. Morley Mao; Jiachen Sun; Qingzhao Zhang; Bhavya Kailkhura; Zhiding Yu; Chaowei Xiao; Z. Morley Mao (2022). ModelNet40-C [Dataset]. http://doi.org/10.5281/zenodo.6017834
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 9, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jiachen Sun; Qingzhao Zhang; Bhavya Kailkhura; Zhiding Yu; Chaowei Xiao; Z. Morley Mao; Jiachen Sun; Qingzhao Zhang; Bhavya Kailkhura; Zhiding Yu; Chaowei Xiao; Z. Morley Mao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We create the ModelNet40-C dataset, which contains 185,100 point clouds from 40 classes, 15 corruption types, and 5 severity levels. We provide a detailed taxonomy of the constructed corruption types. ModelNet40-C is, to the best of our knowledge, the first comprehensive dataset for benchmarking corruption robustness of 3D point cloud classification. This dataset is from our arXiv paper: Benchmarking Robustness of 3D Point Cloud Recognition Against Common Corruptions.

  3. t

    ShapeNet and ModelNet40 - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). ShapeNet and ModelNet40 - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/shapenet-and-modelnet40
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The dataset used in the paper is ShapeNet, a large-scale 3D shape dataset, and ModelNet40, a dataset for 3D object classification.

  4. f

    Results of different combinations of key components on ModelNet40.

    • plos.figshare.com
    xls
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai (2025). Results of different combinations of key components on ModelNet40. [Dataset]. http://doi.org/10.1371/journal.pone.0325261.t008
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Results of different combinations of key components on ModelNet40.

  5. P

    ModelNet40 (Pretrained on ShapeNet) Dataset

    • library.toponeai.link
    • paperswithcode.com
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Le Xue; Mingfei Gao; Chen Xing; Roberto Martín-Martín; Jiajun Wu; Caiming Xiong; ran Xu; Juan Carlos Niebles; Silvio Savarese (2025). ModelNet40 (Pretrained on ShapeNet) Dataset [Dataset]. https://library.toponeai.link/dataset/modelnet40-pretrained-on-shapenet-only
    Explore at:
    Dataset updated
    Apr 28, 2025
    Authors
    Le Xue; Mingfei Gao; Chen Xing; Roberto Martín-Martín; Jiajun Wu; Caiming Xiong; ran Xu; Juan Carlos Niebles; Silvio Savarese
    Description

    The ModelNet40 zero-shot 3D classification performance of models pretrained on ShapeNet only.

  6. h

    modelnet40

    • huggingface.co
    Updated Aug 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johnathan Xie (2023). modelnet40 [Dataset]. https://huggingface.co/datasets/jxie/modelnet40
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 2, 2023
    Authors
    Johnathan Xie
    Description

    Dataset Card for "modelnet40"

    More Information needed

  7. f

    ModelNet40: Comparison of registration errors at different noise levels.

    • plos.figshare.com
    xls
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai (2025). ModelNet40: Comparison of registration errors at different noise levels. [Dataset]. http://doi.org/10.1371/journal.pone.0325261.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ModelNet40: Comparison of registration errors at different noise levels.

  8. t

    ModelNet40-C - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). ModelNet40-C - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/modelnet40-c
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The dataset used in the paper is ModelNet40-C, which is a 3D point cloud dataset with various corruptions.

  9. modelnet40_normal_resampled

    • kaggle.com
    Updated May 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    QuyNguyen03 (2024). modelnet40_normal_resampled [Dataset]. https://www.kaggle.com/datasets/quynguyen03/modelnet40-normal-resampled/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    QuyNguyen03
    Description

    Dataset

    This dataset was created by QuyNguyen03

    Contents

  10. f

    ModelNet40: Registration results for the invisible point cloud categories.

    • plos.figshare.com
    xls
    Updated Jun 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai (2025). ModelNet40: Registration results for the invisible point cloud categories. [Dataset]. http://doi.org/10.1371/journal.pone.0325261.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ModelNet40: Registration results for the invisible point cloud categories.

  11. t

    Xi-An Lia, Lei Zhang, Li-Yan Wang, Jian Lu (2024). Dataset: ModelNet10 and...

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Xi-An Lia, Lei Zhang, Li-Yan Wang, Jian Lu (2024). Dataset: ModelNet10 and ModelNet40. https://doi.org/10.57702/9uxownfc [Dataset]. https://service.tib.eu/ldmservice/dataset/modelnet10-and-modelnet40
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The dataset used for point cloud classification and segmentation tasks.

  12. f

    ModelNet40: Registration results for an invisible point cloud with gaussian...

    • plos.figshare.com
    xls
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai (2025). ModelNet40: Registration results for an invisible point cloud with gaussian noise. [Dataset]. http://doi.org/10.1371/journal.pone.0325261.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ModelNet40: Registration results for an invisible point cloud with gaussian noise.

  13. h

    Point-PRC

    • huggingface.co
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jerry Sun (2024). Point-PRC [Dataset]. https://huggingface.co/datasets/auniquesun/Point-PRC
    Explore at:
    Dataset updated
    Dec 16, 2024
    Authors
    Jerry Sun
    Description

    Datasets

    We conduct experiments on three new 3D domain generalization (3DDG) benchmarks proposed by us, as introduced in the next section.

    base-to-new class generalization (base2new) cross-dataset generalization (xset) few-shot generalization (fewshot)

    The structure of these benchmarks should be organized as follows.

    /path/to/Point-PRC
    |----data # placed in the same level of `trainers`, `weights`, etc. 
      |----base2new
        |----modelnet40… See the full description on the dataset page: https://huggingface.co/datasets/auniquesun/Point-PRC.
    
  14. f

    Registration performance on the Stanford dataset.

    • plos.figshare.com
    xls
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai (2025). Registration performance on the Stanford dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0325261.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    With the advancement of sensor technologies such as LiDAR and depth cameras, the significance of three-dimensional point cloud data in autonomous driving and environment sensing continues to increase.Point cloud registration stands as a fundamental task in constructing high-precision environmental models, with particular significance in overlapping regions where the accuracy of feature extraction and matching directly impacts registration quality. Despite advancements in deep learning approaches, existing methods continue to demonstrate limitations in extracting comprehensive features within these overlapping areas. This study introduces an innovative point cloud registration framework that synergistically combines the K-nearest neighbor (KNN) algorithm with a channel attention mechanism (CAM) to significantly enhance feature extraction and matching capabilities in overlapping regions. Additionally, by designing an effectiveness scoring network, the proposed method improves registration accuracy and enhances system robustness in complex scenarios. Comprehensive evaluations on the ModelNet40 dataset reveal that our approach achieves markedly superior performance metrics, demonstrating significantly lower root mean square error (RMSE) and mean absolute error (MAE) compared to established methods including iterative closest point (ICP), Robust & Efficient Point Cloud Registration using PointNet (PointNetLK), Go-ICP, fast global registration (FGR), deep closest point (DCP), self-supervised learning for a partial-to-partial registration (PRNet), and Iterative Distance-Aware Similarity Matrix Convolution (IDAM). This performance advantage is consistently maintained across various challenging conditions, including unseen shapes, novel categories, and noisy environments. Furthermore, additional experiments on the Stanford dataset validate the applicability and robustness of the proposed method for high-precision 3D shape registration tasks.

  15. f

    Registration performance with noise on the Stanford dataset.

    • plos.figshare.com
    xls
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai (2025). Registration performance with noise on the Stanford dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0325261.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Registration performance with noise on the Stanford dataset.

  16. h

    ModelNet_Splats

    • huggingface.co
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShapeSplat (2024). ModelNet_Splats [Dataset]. https://huggingface.co/datasets/ShapeSplats/ModelNet_Splats
    Explore at:
    Dataset updated
    Sep 13, 2024
    Dataset authored and provided by
    ShapeSplat
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This repository contains ShapeSplats, a large dataset of Gaussian splats spanning 65K objects in 87 unique categories (gathered from ShapeNetCore, ShapeNet-Part, and ModelNet). ModelNet_Splats consists of the 12 objects across 40 categories of ModelNet40. The data is distributed as ply files where information about each Gaussian is encoded in custom vertex attributes. Please see DATA.md for details about the data. If you use the ModelNet_Splats data, you agree to abide by the ModelNet terms of… See the full description on the dataset page: https://huggingface.co/datasets/ShapeSplats/ModelNet_Splats.

  17. f

    Running time of different registration algorithms.

    • plos.figshare.com
    xls
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai (2025). Running time of different registration algorithms. [Dataset]. http://doi.org/10.1371/journal.pone.0325261.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Yangzhuo Chen; Fengjiao Guo; Jingang Liu; Siling Dai; Jia Huang; Xiaowen Cai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Running time of different registration algorithms.

  18. f

    Comparison of classification accuracy of proposed defenses with other...

    • plos.figshare.com
    xls
    Updated Jun 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hanieh Naderi; Kimia Noorbakhsh; Arian Etemadi; Shohreh Kasaei (2023). Comparison of classification accuracy of proposed defenses with other defense strategies, under various attacks on DGCNN and ModelNet40 datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0271388.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 17, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Hanieh Naderi; Kimia Noorbakhsh; Arian Etemadi; Shohreh Kasaei
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of classification accuracy of proposed defenses with other defense strategies, under various attacks on DGCNN and ModelNet40 datasets.

  19. O

    ULIP-2

    • opendatalab.com
    zip
    Updated May 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Texas at Austin (2023). ULIP-2 [Dataset]. https://opendatalab.com/OpenDataLab/ULIP-2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 15, 2023
    Dataset provided by
    University of Texas at Austin
    Salesforce AI
    Stanford University
    Description

    ULIP-2, a multimodal pre-training framework that leverages state-of-the-art multimodal large language models (LLMs) pre-trained on extensive knowledge to automatically generate holistic language counterparts for 3D objects. We conduct experiments on two large-scale datasets, Objaverse and ShapeNet55, and release our generated three-modality triplet datasets (3D Point Cloud - Image - Language), named "ULIP-Objaverse Triplets" and "ULIP-ShapeNet Triplets". ULIP-2 requires only 3D data itself and eliminates the need for any manual annotation effort, demonstrating its scalability; and ULIP-2 achieves remarkable improvements on downstream zero-shot classification on ModelNet40 (74% Top1 Accuracy). Moreover, ULIP-2 sets a new record on the real-world ScanObjectNN benchmark (91.5% Overall Accuracy) while utilizing only 1.4 million parameters(~10x fewer than current SOTA), signifying a breakthrough in scalable multimodal 3D representation learning without human annotations.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zhirong Wu; Shuran Song; Aditya Khosla; Fisher Yu; Linguang Zhang; Xiaoou Tang; Jianxiong Xiao (2023). ModelNet Dataset [Dataset]. https://paperswithcode.com/dataset/modelnet

ModelNet Dataset

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 29, 2023
Authors
Zhirong Wu; Shuran Song; Aditya Khosla; Fisher Yu; Linguang Zhang; Xiaoou Tang; Jianxiong Xiao
Description

The ModelNet40 dataset contains synthetic object point clouds. As the most widely used benchmark for point cloud analysis, ModelNet40 is popular because of its various categories, clean shapes, well-constructed dataset, etc. The original ModelNet40 consists of 12,311 CAD-generated meshes in 40 categories (such as airplane, car, plant, lamp), of which 9,843 are used for training while the rest 2,468 are reserved for testing. The corresponding point cloud data points are uniformly sampled from the mesh surfaces, and then further preprocessed by moving to the origin and scaling into a unit sphere.

Search
Clear search
Close search
Google apps
Main menu