Facebook
TwitterGeospatial data about Mohave County, Arizona Parcels. Export to CAD, GIS, PDF, CSV and access via API.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Google Base Map content for Mohave County, Arizona.
Development based on the following article: Add Google Maps to ArcMap and Pro
Facebook
TwitterMohave County General Purpose Map Data Layers
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Cerbat Foothills TrailDescription: The City of Kingman and Kingman Field Office of the Bureau of Land Management, with funding from the Trails Heritage Fund, have completed a trail system within the Cerbat Foothills Recreation Area (CFRA). The 11,300 acre CFRA is a mixture of Federal, State, County, City, and private lands. A management plan for the area was approved in 1995 by the City of Kingman and BLM. The plan sets a framework for long-term cooperative management of City and BLM controlled lands for recreational purposes. Human occupations in the CFRA date back at least 4,000 years. Late Archaic, Cerbat, Cohonina, and Hualapai people lived here. In 1871 the Army built a military post at Camp Beale Springs and established a temporary reservation for the Hualapai Tribe in this area. The CFRA provides habitat for mule deer, Sonoran desert tortoise, coyotes, foxes, Gambel’s quail, mourning dove, several types of raptors, and many smaller mammals, birds, and reptiles. The CFRA is in an area of Mohave Desert scrub/semi-desert grassland, with yucca, beavertail, prickly pear, creosote, and mesquite.Directions: To get to Badger Trailhead from Kingman, follow Highway 93 five miles north from city limits. The trailhead is located one-quarter mile noth of the Highway 68 intersection (the first right turn after the intersection).General Location: Kingman AreaTrail Distance:Camp Beale Loop - 3.26 milesBadger Trail - 3.20 milesCastle Rock Trail - 4.45 milesCook Canyon Trail - 8.10 miles Trail Type: Non-Motorized.Difficulty: Easy to Moderate.Trail Use Guidelines:Please stay on the designated trail.Keep to the right of the trail, save the left for passing.All downhill traffic yields to uphill traffic.Approach each turn as if someone were around the corner.Keep pets under control and/or on a leash when on the trail.Leave no trace.Plan ahead and prepare.Dispose of waste properly.Leave what you find.Respect wildlife.Be considerate of other visitors.
Facebook
TwitterThis map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
Facebook
Twitter
Facebook
TwitterThis data set was developed to provide geologic map GIS of the Coeur d'Alene 1:100,000 quadrangle for use in future spatial analysis by a variety of users. These data can be printed in a variety of ways to display various geologic features or used for digital analysis and modeling. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g. 1:62,500 or 1:24,000).
The digital geologic map of the Coeur d'Alene 1:100,000 quadrangle was compiled from preliminary digital datasets [Athol, Coeur d'Alene, Kellogg, Kingston, Lakeview, Lane, and Spirit Lake 15-minute quadrangles] prepared by the Idaho Geological Survey from A. B. Griggs (unpublished field maps), supplemented by Griggs (1973) and by digital data from Bookstrom and others (1999) and Derkey and others (1996). The digital geologic map database can be queried in many ways to produce a variety of derivative geologic maps.
This GIS consists of two major Arc/Info data sets: one line and polygon file (cda100k) containing geologic contacts and structures (lines) and geologic map rock units (polygons), and one point file (cda100kp) containing structural data.
Facebook
TwitterThe data set for the Butler Peak quadrangle has been prepared by the Southern California Areal Mapping Project (SCAMP), a cooperative project sponsored jointly by the U.S. Geological Survey and the California Division of Mines and Geology, as part of an ongoing effort to utilize a Geographical Information System (GIS) format to create a regional digital geologic database for southern California. This regional database is being developed as a contribution to the National Geologic Map Data Base of the National Cooperative Geologic Mapping Program of the USGS. Development of the data set for the Butler Peak quadrangle has also been supported by the U.S. Forest Service, San Bernardino National Forest.
The digital geologic map database for the Butler Peak quadrangle has been created as a general-purpose data set that is applicable to other land-related investigations in the earth and biological sciences. For example, the U.S. Forest Service, San Bernardino National Forest, is using the database as part of a study of an endangered plant species that shows preference for particular rock type environments. The Butler Peak database is not suitable for site-specific geologic evaluations at scales greater than 1:24,000 (1 in = 2,000 ft).
This data set maps and describes the geology of the Butler Peak 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage showing geologic contacts and units,(2) a scanned topographic base at a scale of 1:24,000, and (3) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map on a 1:24,000 topographic base accompanied by a Description of Map Units (DMU), a Correlation of Map Units (CMU), and a key to point and line symbols; (2) PDF files of the DMU and CMU, and of this Readme, and (3) this metadata file.
The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 mylar orthophoto-quadrangle and then to a base-stable topographic map. This map was then scribed, and a .007 mil, right-reading, black line clear film made by contact photographic processes.The black line was scanned and auto-vectorized by Optronics Specialty Company, Northridge, CA. The non-attributed scan was imported into ARC/INFO, where the database was built. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
Facebook
TwitterThis data set contains up to nine types of digital elevation data: 1-1 degree blocks, 2-1 degree x 3 degree mosaic of elevation (latitude/longitude coordinate system), 3-1 degree x 3 degree mosaic of slope, 4-1 degree x 3 degree mosaic of aspect (latitude/longitude coordinate system), 5-1 degree x 3 degree mosaic of filtered elevation (5 x 5 filter), 6-1 degree x 3 degree mosaic of elevation (UTM registered), 7-1 degree x 3 degree mosaic of slope (UTM registered), 8-1 degree x 3 degree mosaic of aspect (UTM registered), 9-1 degree x 3 degree mosaic of shaded relief (latitude/longitude coordinate system). Data coverage is from 1982 to present with work ongoing. Data source is 1:250,000 scale Defense Mapping Agency Digital Terrain Series. The data set currently contains 966 records with estimated growth of 5-15 records per year. Storage required varies by selection on area size. Data are available on: 9-track, 800 bpi, 1600 bpi, 6250 bpi, unlabeled, unblocked, or BCD tape. Subsets on the main file and custom formats as well as limited documentation is available.
Data is organized by 7 1/2 ' or 15 ' quads. This data is intended to be used
for land cover analysis, wildlife refuge studies, drainage analysis, and land
use planning.
Facebook
TwitterThe data set for the Corona North 7.5' quadrangle was prepared under the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) as part of an ongoing effort to develop a regional geologic framework of southern California, and to utilize a Geographic Information System (GIS) format to create regional digital geologic databases. These regional databases are being developed as contributions to the National Geologic Map Database of the National Cooperative Geologic Mapping Program of the USGS.
This data set maps and describes the geology of the Corona North 7.5' quadrangle, Riverside and San Bernardino Counties, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a coverage containing structural data, (3) a coverage containing geologic unit annotation and leaders, and (4) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) a postscript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), and a key for point and line symbols, and (2) PDF files of the Readme (including the metadata file as an appendix), and the graphic produced by the Postscript plot file.
The Corona North quadrangle is located near the northern end of the Peninsular Ranges Province. All but the southeastern tip of the quadrangle is within the Perris block, a relatively stable, rectangular in plan area located between the Elsinore and San Jacinto fault zones. The southeastern tip of the quadrangle is barely within the Elsinore fault zone.
The quadrangle is underlain by Cretaceous plutonic rocks that are part of the composite Peninsular Ranges batholith. These rocks are exposed in a triangular-shaped area bounded on the north by the Santa Ana River and on the south by Temescal Wash, a major tributary of the Santa Ana River. A variety of mostly silicic granitic rocks occur in the quadrangle, and are mainly of monzogranite and granodioritic composition, but range in composition from micropegmatitic granite to gabbro. Most rock units are massive and contain varying amounts of meso- and melanocratic equant-shaped inclusions. The most widespread granitic rock is monzogranite of the Cajalco pluton, a large pluton that extends some distance south of the quadrangle. North of Corona is a body of micropegmatite that appears to be unique in the batholith rocks.
Diagonally bisecting the quadrangle is the Santa Ana River. North of the Santa Ana River alluvial deposits are dominated by the distal parts of alluvial fans emanating from the San Gabriel Mountains north of the quadrangle. Widespread areas of the fan deposits are covered by a thin layer of wind blown sand.
Alluvial deposits in the triangular-shaped area between the Santa Ana River and Temescal Wash are quite varied, but consist principally of locally derived older alluvial fan deposits. These deposits rest on remnants of older, early Quaternary or late Tertiary age, nonmarine sedimentary deposits that were derived from both local sources and sources as far away as the San Bernardino Mountains. These deposits in part were deposited by an ancestral Santa Ana River. Older are a few scattered remnants of late Tertiary (Pliocene) marine sandstone that include some conglomerate lenses. Clasts in the conglomerate include siliceous volcanic rocks exotic to this part of southern California. This sandstone was deposited as the southeastern-most part of the Los Angeles sedimentary marine basin and was deposited along a rocky shoreline developed in the granitic rocks, much like the present day shoreline at Monterey, California. Most of the sandstone and granitic paleoshoreline features have been removed by quarrying and grading in the area of Porphyry north to Highway 91. Excellent exposures in highway road cuts still remain on the north side of Highway 91 just east of the 91-15 interchange and on the east side of U.S. 15 just north of the interchange.
South of Temescal Wash is a series of both younger and older alluvial fan deposits emanating from the Santa Ana Mountains to the southeast. In the immediate southwest corner of the quadrangle is a small exposure of sandstone and pebble conglomerate of the Sycamore Canyon member of the Puente Formation of early Pliocene and Miocene age and sandstone and conglomerate of undivided Sespe and Vaqueros Formations of early Miocene, Oligocene, and late Eocene age.
The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation recorded on 1:24,000 scale aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 scale topographic base. The map was digitized and lines, points, and polygons were subsequently edited using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units are polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
Facebook
TwitterThis publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Digital Data Series DDS-43. The data for this publication total 175 MB on the CD-ROM and 167 MB for this online version. This online version does not include the Acrobat Search index files. It also has a link rather than files for the Adobe Acrobat Reader installer mentioned below.
The Sierra Nevada Ecosystem Project was requested by Congress in the Conference Report for Interior and Related Agencies 1993 Appropriation Act (H.R. 5503), which authorized funds for a "scientific review of the remaining old growth in the national forests of the Sierra Nevada in California, and for a study of the entire Sierra Nevada ecosystem by an independent panel of scientists, with expertise in diverse areas related to this issue."
This publication is a digital version of the set of reports titled Sierra Nevada Ecosystem Project, Final Report to Congress published in paper form by the Centers for Water and Wildland Resources of the University of California, Davis. The reports consist of Wildland Resources Center Report No. 39 (Summary), No. 36 (Vol. I - Assessment summaries and management strategies), No. 37 (Vol. II - Assessments and scientific basis for management options), No. 38 (Vol. III - Assessments, commissioned reports, and background information), and No. 40 (Addendum). Vol. IV is a computer-based catalogue of all public databases, maps, and other digitally stored information used in the project. Vol. IV materials are listed under the SNEP name and available on the Internet from the Alexandria Project at the University of California at Santa Barbara and the California Environmental Resource Evaluation System (CERES) project of the Resources Agency of the state of California (see links below).
[Summary provided by the USGS.]
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dolan Springs TrailDescription: Hiking, horse back riding, mountain bike riding is allowed and encouraged on these trails. The trail is accessible to both young and old. This section is 480 acres and has approximately 4 to 10 miles of trails for you to enjoy. It has a drive thru horse trailer parking area, hitching rail, and a small parking lot. The trail is located between 15th St and 13th St. The beauty of this trail is that it is at the base of Mt. Mitten, at the far north end of the Cerbat Mountain range and also the most northern part of the Mt. Tipton Wilderness Area.Directions: To get to section 30, drive up N. Pierce Ferry Road to 15th St, then right turn to Lost Mine Road, and at the intersection of 14th St and the Jeep trail, you will find the parking lot. Look for the flag there to mark the spot. The trail itself has flags and other markings for you to mark the trail itself. The trail is just beyond Mt Tipton school on Pierce Ferry Road.General Location: Dolan Springs AreaTrail Distance: X milesTrail Type: Non-motorized; multi-use.Difficulty: Easy to ModerateTrail Use Guidelines:Please stay on the designated trail.Keep to the right of the trail, save the left for passing.All downhill traffic yields to uphill traffic.Approach each turn as if someone were around the corner.Keep pets under control and/or on a leash when on the trail.Leave no trace.Plan ahead and prepare.Dispose of waste properly.Leave what you find.Respect wildlife.Be considerate of other visitors.
Facebook
TwitterThis map has 2 mGal gravity contours over a topographic base at a scale of 1:100,000. It covers the southern portion of San Francisco Bay, most of the Santa Clara Valley, and the surrounding mountains. It is a companion to U.S. Geological Survey Open-File Report 03-360, Shaded Relief Aeromagnetic Map of the Santa Clara Valley and Vicinity, California by Carter W. Roberts and Robert C. Jachens.
[Summary provided by USGS.]
Facebook
TwitterThe data set for the Porcupine Wash quadrangle has been prepared by the Southern California Areal Mapping Project (SCAMP), a cooperative project sponsored jointly by the U.S. Geological Survey and the California Division of Mines and Geology. The Porcupine Wash data set represents part of an ongoing effort to create a regional GIS geologic database for southern California. This regional digital database, in turn, is being developed as a contribution to the National Geologic Map Database of the National Cooperative Geologic Mapping Program of the USGS. The Porcupine Wash database has been prepared in cooperation with the National Park Service as part of an ongoing project to provide Joshua Tree National Park with a geologic map base for use in managing Park resources and developing interpretive materials.
The digital geologic map database for the Porcupine Wash quadrangle has been created as a general-purpose data set that is applicable to land-related investigations in the earth and biological sciences. Along with geologic map databases in preparation for adjoining quadrangles, the Porcupine Wash database has been generated to further our understanding of bedrock and surficial processes at work in the region and to document evidence for seismotectonic activity in the eastern Transverse Ranges. The database is designed to serve as a base layer suitable for ecosystem and mineral resource assessment and for building a hydrogeologic framework for Pinto Basin.
This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits.
The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set.
The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Environmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
Map nomenclature and symbols
Within the geologic map database, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. The authors have attempted to adhere to the stratigraphic nomenclature of the U.S. Geological Survey and the North American Stratigraphic Code, but the database has not received a formal editorial review of geologic names.
Special symbols are associated with some map units. Question marks have been added to the unit symbol (e.g., QTs?, Prpgd?) and unit name where unit assignment based on interpretation of aerial photographs is uncertain. Question marks are plotted as part of the map unit symbol for those polygons to which they apply, but they are not shown in the CMU or DMU unless all polygons of a given unit are queried. To locate queried map-unit polygons in a search of database, the question mark must be included as part of the unit symbol.
Geologic map unit labels entered in database items LABL and PLABL contain substitute characters for conventional stratigraphic age symbols: Proterozoic appears as 'Pr' in LABL and as '<' in PLABL, Triassic appears as 'Tr' in LABL and as '^' in PLABL. The substitute characters in PLABL invoke their corresponding symbols from the GeoAge font group to generate map unit labels with conventional stratigraphic symbols.
Facebook
TwitterThe USGS Western Region Coastal and Marine Geology division contains extensive bathymetry data through InfoBank ("http://walrus.wr.usgs.gov/infobank/gazette/html/bathymetry/gl.html") Data includes bathymetry, magnetics, gravity, multibeam, subbottom profiler data, and sample data.
Older bathymetric and elevation data is still available from the
walrus anonymous ftp server (available on the web only), at:
"http://walrus.wr.usgs.gov/ftp/"
Facebook
TwitterThe purpose of this project is to map the surficial geology of the sea floor of Historic Area Remediation Site (HARS) and changes in surficial characteristics over time. The sea floor of the HARS, approximately 9 square nautical miles in area, is being remediated by placing at least a one-meter of clean dredged material on top of the existing surface sediments that exhibit varying degrees degradation resulting from previous disposal of dredged and other material. This GIS project presents multibeam and other data in a digital format for analysis and display by scientists, policy makers, managers and the general public. Comparison of the topography and backscatter intensity from the three surveys show changes in topography and surficial sediment properties resulting from placement of dredged material in 1996 and 1997 prior to designation of the HARS, as well as placement of material for remediation of the HARS. This study is carried out cooperatively by the U.S. Geological Survey and the U.S. Army Corps of Engineers.
This data set includes topography and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), located offshore of New York and New Jersey. The data were collected with a multibeam sea floor mapping system on surveys conducted November 23 - December 3, 1996, October 26 - November 11, 1998, and April 6 - 30, 2000. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Hydrographic Service vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 times the water depth (swath width of 100 to 200 m within the survey area). The horizontal resolution of the beam on the sea floor is approximately 10% of the water depth (3-5 meters in the survey region). Vertical resolution is approximately 1 percent of the water depth, or 0.3 m. Maps derived from the mulitbeam observations show sea floor topography, shaded relief, and backscatter intensity (a measure of sea floor texture and roughness) at a spatial resolution of 3 m/pixel.
Facebook
TwitterThe Long Valley Caldera GIS Database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.
[Summary provided by the USGS.]
Facebook
TwitterThis database and accompanying plot files depict the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes. In addition, this map does not take the place of fault-rupture hazard zones designated by the Oregon State Geologist. Similarly, the database cannot be used to identify or delineate landslides in the region.
This digital map database, largely compiled from new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Roseburg 30 x 60 minute quadrangle along the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains. Together with the accompanying text files as PDF (rb_geol.pdf), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps is 1:24,000, but the Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller.
Facebook
TwitterThis map features highway-level and street-level data for the world. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Street Map.
Facebook
TwitterThis digital data set of Canada (Northwest Territories) contains land cover classifications derived from Landsat MSS data. It can be keyed on a Canadian 1:250,000 quadrangle basis. Spatial referencing is by 50 meter grid cells. The data source is Landsat MSS data (no DEM data contained). There are 5 records and storage of them varies by storage required and storage medium and selected area. The file structure is sequential. Data are available on: 9-track, 800 bpi, 1600 bpi, 6250 bpi, unlabeled, unblocked, BCD, fixed record length tape and 8' floppy disk. Subsets and custom formats are available; limited documentation is also available. The data is organized by 7 1/2 ' or 15 ' quads. General area covered: Northwest Territories in Canada.
Facebook
TwitterGeospatial data about Mohave County, Arizona Parcels. Export to CAD, GIS, PDF, CSV and access via API.