Montana FWP lands region 7 printable map 36x36 for Montana FWP Printable Map Catalog. Maps will be regularly updated as data updates occur.
Montana FWP lands region 6 printable map 36x18 for Montana FWP Printable Map Catalog. Maps will be regularly updated as data updates occur.
The Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming, Montana, and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (yell_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Also included is a zip containing a Montana State University Master's thesis and supporting documents and data. The thesis focuses on addressing map boundary inconsistencies and remapping portions of the park. Data and documents supporting the thesis are 1.) a geodatabase containing field data points, 2.) a collection of documents describing field sites, 3.) spreadsheets containing geochemical analysis results, and 4.) photographs taken during field work. Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey, Montana Bureau of Mines and Geology and Montana State University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
Montana FWP lands printable map 36x48 for Montana FWP Printable Map Catalog. Maps will be regularly updated as data updates occur.
Carbon County Cadastral Data ResourcesA snapshot of property and parcel data for June 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
This data set depicts federal lands having restrictions on access or activities -- that is, lands mangaed by the National Park Service, Defense Department, or Energy Department -- in western North America. The data set was created by reformatting and merging state- and province-based ownership data layers originally acquired from diverse sources (including state GAP programs, USBLM state offices and other sources). For each original dataset 3 additional fields, "Pub_Pvt", "CA_OWN", and "SOURCE" were added and populated based on the specific ownership information contained in the source data. The original coverages were then merged based on the "CA_OWN" field. Finally, NPS, DOD, and DOE lands were selected out of the ownership layer. All work was completed in AcMap 8.3. This product and all source data are available online from SAGEMAP: http://sagemap.wr.usgs.gov.
The Digital Geologic-GIS Map of Glacier National Park, Montana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (glac_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (glac_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (glac_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (glac_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (glac_geology_metadata_faq.pdf). Please read the glac_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (glac_geology_metadata.txt or glac_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Mobile Map Packages (MMPK’s) can be used in the ESRI Field Maps app (no login required), either by direct download in the Field Maps app or by sideloading from your PC. They can also be used in desktop applications that support MMPK’s such as ArcGIS Pro, and ArcGIS Navigator. MMPK’s will expire quarterly and have a warning for the user at that time but will still function afterwards. They are updated quarterly to ensure you have the most up to date data possible. These mobile map packages include the following national datasets along with others: Surface Management Agency, Public Land Survey System (PLSS), BLM Recreation Sites, National Conservation Lands, ESRI’s Navigation Basemap and Vector Tile Package. Last updated 20250321. Contact jlzimmer@blm.gov with any questions.
These data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, are currently being digitized on a state-by-state basis from the 7.5-minute (1:24,000-scale) and the 15-minute (1:48,000 and 1:62,500-scale) archive of the USGS Historical Topographic Maps Collection, or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. To date, the compilation of 500,000-plus point and polygon mine symbols from approximately 67,000 maps of 22 western states has been completed: Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Idaho (ID), Iowa (IA), Kansas (KS), Louisiana (LA), Minnesota (MN), Missouri (MO), Montana (MT), North Dakota (ND), Nebraska (NE), New Mexico (NM), Nevada (NV), Oklahoma (OK), Oregon (OR), South Dakota (SD), Texas (TX), Utah (UT), Washington (WA), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the western U.S., but an approximate time line of when these activities occurred. The data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. The data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
The Lands pdf represent the location and project number of NMDOT Construction projects.
Montana FWP lands region 5 printable map 36x36 for Montana FWP Printable Map Catalog. Maps will be regularly updated as data updates occur.
The Digital Geologic-GIS Maps of Bighorn Canyon National Recreation Area, Montana and Wyoming is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (bica_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bica_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (bica_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (bica_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (bica_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bica_geology_metadata_faq.pdf). Please read the bica_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Montana Bureau of Mines and Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bica_geology_metadata.txt or bica_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
no abstract provided
This map forms part of the Montana State Geological Map.
The Ennis 1:100,000 quadrangle lies within both the Laramide (Late Cretaceous to early Tertiary) foreland province of southwestern Montana and the northeastern margin of the middle to late Tertiary Basin and Range province.
The oldest rocks in the quadrangle are Archean high-grade gneiss, and granitic to ultramafic intrusive rocks that are as old as about 3.0 Ga. The gneiss includes a supracrustal assemblage of quartz-feldspar gneiss, amphibolite, quartzite, and biotite schist and gneiss. The basement rocks are overlain by a platform sequence of sedimentary rocks as old as Cambrian Flathead Quartzite and as young as Upper Cretaceous Livingston Group sandstones, shales, and volcanic rocks.
The Archean crystalline rocks crop out in the cores of large basement uplifts, most notably the "Madison-Gravelly arch" that includes parts of the present Tobacco Root Mountains and the Gravelly, Madison, and Gallatin Ranges. These basement uplifts or blocks were thrust westward during the Laramide orogeny over rocks as young as Upper Cretaceous. The thrusts are now exposed in the quadrangle along the western flanks of the Gravelly and Madison Ranges (the Greenhorn thrust and the Hilgard fault system, respectively). Simultaneous with the west-directed thrusting, northwest-striking, northeast-side-up reverse faults formed a parallel set across southwestern Montana; the largest of these is the Spanish Peaks fault, which cuts prominently across the Ennis quadrangle.
Beginning in late Eocene time, extensive volcanism of the Absorka Volcanic Supergroup covered large parts of the area; large remnants of the volcanic field remain in the eastern part of the quadrangle. The volcanism was concurrent with, and followed by, middle Tertiary extension. During this time, the axial zone of the "Madison-Gravelly arch," a large Laramide uplift, collapsed, forming the Madison Valley, structurally a complex down-to-the-east half graben. Basin deposits as thick as 4,500 m filled the graben.
Pleistocene glaciers sculpted the high peaks of the mountain ranges and formed the present rugged topography.
Compilation scale is 1:100,000. Geology mapped between 1988 and 1995. Compilation completed 1997. Review and revision completed 1997. Archive files prepared 1998-02.
description: The digital ARC/INFO databases included in this directory provide a geologic map GIS database of the Absaroka-Beartooth study area (ABSA), a tract of approximately 1.4 million acres of National Forest land in southwestern Montana. The ABSA is adjacent to the northern part of Yellowstone National Park, and includes southeastern parts of Gallatin National Forest and western parts of the Custer National Forest. The geologic map was originally prepared to accompany a U.S. Geological Survey evaluation of the mineral resource potential within the ABSA. The results of this mineral resource assessment were published as U.S. Geological Survey Open-File Report 93-207 and the geologic map was plate 1 of this report. The enclosed ARC/INFO database was created directly from the base materials used to create the geologic map (plate 1) in the ABSA report.; abstract: The digital ARC/INFO databases included in this directory provide a geologic map GIS database of the Absaroka-Beartooth study area (ABSA), a tract of approximately 1.4 million acres of National Forest land in southwestern Montana. The ABSA is adjacent to the northern part of Yellowstone National Park, and includes southeastern parts of Gallatin National Forest and western parts of the Custer National Forest. The geologic map was originally prepared to accompany a U.S. Geological Survey evaluation of the mineral resource potential within the ABSA. The results of this mineral resource assessment were published as U.S. Geological Survey Open-File Report 93-207 and the geologic map was plate 1 of this report. The enclosed ARC/INFO database was created directly from the base materials used to create the geologic map (plate 1) in the ABSA report.
no abstract provided
Feature class of Montana State Boundary was created to be coincident with the Montana County Boundaries, GCDB, and Cadastral Parcel Boundaries. Where the boundary is coincident with public land survey section lines, they were copied from the BLM's Geographic Coordinate Database (GCDB). If boundary was not coincident with GCDB lines, they were digitized on screen from 1:24,000 scale Geological Survey Digital Raster Graphics (DRGs). The state boundary will change as the GCDB / Montana CadNSDI is adjusted by the BLM / Montana State Library and those data are incorporated with the Montana Spatial Data Infrastructure Administrative Boundaries & Cadastral datasets.
The Lands pdf represent the location and project number of NMDOT Construction projects.
no abstract provided
Montana FWP lands region 7 printable map 36x36 for Montana FWP Printable Map Catalog. Maps will be regularly updated as data updates occur.