In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.
Typical annual rainfall data were summarized from monthly precipitation data and provided in millimeters (mm). The monthly climate data for global land areas were generated from a large network of weather stations by the WorldClim project. Precipitation and temperature data were collected from the weather stations and aggregated across a target temporal range of 1970-2000.
Weather station data (between 9,000 and 60,000 stations) were interpolated using thin-plate splines with covariates including elevation, distance to the coast, and MODIS-derived minimum and maximum land surface temperature. Spatial interpolation was first done in 23 regions of varying size depending on station density, instead of the common approach to use a single model for the entire world. The satellite imagery data were most useful in areas with low station density. The interpolation technique allowed WorldClim to produce high spatial resolution (approximately 1 km2) raster data sets.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities
This dataset provide:
Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.
Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.
Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.
Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.
Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.
Number of missing daily Tmax, Tmin, and precipitation values are included for each city.
Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.
The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).
Resources:
See included README file for more information.
Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1
Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538
ACIS database for historical observations: http://scacis.rcc-acis.org/
GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
Station information for each city can be accessed at: http://threadex.rcc-acis.org/
2024 August updated -
Annual calculations for 2022 and 2023 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.
Note that future updates may be infrequent.
2022 January updated -
Annual calculations for 2021 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.
2021 January updated -
Annual calculations for 2020 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.
2020 January updated -
Annual calculations for 2019 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.
Thresholds for all 210 cities were combined into one single file – Thresholds.csv.
2019 June updated -
Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.
README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).
This dataset replaces the previous Time Bias Corrected Divisional Temperature-Precipitation Drought Index. The new divisional data set (NClimDiv) is based on the Global Historical Climatological Network-Daily (GHCN-D) and makes use of several improvements to the previous data set. For the input data, improvements include additional station networks, quality assurance reviews and temperature bias adjustments. Perhaps the most extensive improvement is to the computational approach, which now employs climatologically aided interpolation. This 5km grid based calculation nCLIMGRID helps to address topographic and network variability. This data set is primarily used by the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) to issue State of the Climate Reports on a monthly basis. These reports summarize recent temperature and precipitation conditions and long-term trends at a variety of spatial scales, the smallest being the climate division level. Data at the climate division level are aggregated to compute statewide, regional and national snapshots of climate conditions. For CONUS, the period of record is from 1895-present. Derived quantities such as Standardized precipitation Index (SPI), Palmer Drought Indices (PDSI, PHDI, PMDI, and ZNDX) and degree days are also available for the CONUS sites. In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set. As of November 2018, NClimDiv includes county data and additional inventory files.
These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 4th Edition (1974) of the Atlas of Canada is a collection of six maps. Each map shows the average monthly precipitation for April, May, June, July, August and September.
https://data.gov.tw/licensehttps://data.gov.tw/license
Using observation data from various agencies in Taiwan, including the Central Weather Bureau, Water Resources Agency, Irrigation Agency and Taiwan Power Company, supplementary, homogenization, and gridization operations were carried out to establish grid data with a resolution of 5 kilometers throughout Taiwan. This data was produced by the "Taiwan Climate Change Projection Information and Adaptation Knowledge Platform Project" of the National Science Council.
In April 2025, the average precipitation amounted to 31 liters per square meter, an increase compared to the previous month. The rainiest state in Germany was Saarland.
Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Rainfall data for Delhi from IMD
This data set contains monthly precipitation data from Costa Rica. Data are from 14 sites within Costa Rica covering the time period January 1950 to December 1997.
The wettest months in the United Kingdom tend to be at the start and end of the year. In the period of consideration, the greatest measurement of rainfall was nearly 217 millimeters, recorded in December 2015. The lowest level of rainfall was recorded in April 2021, at 20.6 millimeters. Rainy days The British Isles are known for their wet weather, and in 2024 there were approximately 164 rain days in the United Kingdom. A rainday is when more than one millimeter of rain falls within a day. Over the past 30 years, the greatest number of rain days was recorded in the year 2000. In that year, the average annual rainfall in the UK amounted to 1,242.1 millimeters. Climate change According to the Met Office, climate change in the United Kingdom has resulted in the weather getting warmer and wetter. In 2022, the annual average temperature in the country reached a new record high, surpassing 10 degrees Celsius for the first time. This represented an increase of nearly two degrees Celsius when compared to the annual average temperature recorded in 1910. In a recent survey conducted amongst UK residents, almost 80 percent of respondents had concerns about climate change.
Between 2001 and 2024, the average rainfall in the United Kingdom varied greatly. In 2010, rainfall dropped to a low of 1,020 millimeters, which was a noticeable decrease when compared to the previous year. However, the following year, rainfall increased significantly to a peak of 1,889 millimeters. During the period in consideration, rainfall rarely rose above 1,500 millimeters. In 2024, the annual average rainfall in the UK surpassed 1,386 millimeters. Monthly rainfall On average, rainfall is most common at the start and end of the year. Between 2014 and 2024, monthly rainfall peaked in December 2015 at approximately 217 millimeters. This was the first of only two times during this period that the average monthly rainfall rose above 200 millimeters. This was a deviation from December’s long-term mean of some 134 millimeters. Rainfall highest in Scotland In the United Kingdom, rain is often concentrated around mountainous regions such as the Scottish Highlands, so it is no surprise to see that – on average – it is Scotland that receives the most rainfall annually. However, in 2024, Wales received the highest rainfall amounting to approximately 1,600 millimeters. Geographically, it is the north and west of the United Kingdom that receives the lion's share of rain, as it is more susceptible to rainfall coming in from the Atlantic.
The purpose of this tool is to estimate daily precipitation patterns for a yearly cycle at any location on the globe. The user input is simply the latitude and longitude of the selected location. There is an embedded Zip Code search routine to find the latitude and longitude for US cities. GlobalRainSIM forecasts the daily rainfall based upon two databases.The first was the average number of days in a month with precipitation (wet days) that were compiled and interpolated by Legates and Willmott (1990a and 1990b) with further improvements by Willmott and Matsuura (1995). The second database was the global average monthly precipitation data collected 1961-1990 and cross-validated by New et al. (1999). These two datasets were then used to establish the monthly precipitation totals and the frequency of precipitation in a month. The average precipitation event was calculated as the monthly mean divided by the number of wet days. This mean value was then randomly assigned to a day of the month looping through the number of wet days. In other words, if the average monthly rainfall was 10 mm/month with 5 average wet days, each rain event was 2 mm. This amount (2 mm) was then randomly assigned to 5 days of that month. The advantage of this tool is that a typical pattern of precipitation can be simulated for any global location arriving at an •average year• as a baseline case for comparison. This tool also outputs the daily rainfall as a file or can be easily embedded within another program. Resources in this dataset:Resource Title: Global RainSIM Verson 1.0. File Name: Web Page, url: https://www.ars.usda.gov/research/software/download/?softwareid=227&modecode=50-60-05-00 download page
In 2024, Louisiana recorded ***** inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only **** inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of **** inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.
The Boston Water and Sewer Commission (BWSC) maintains collection sites throughout the city. Those collection sites are equipped with solar powered rain gauges on top of public buildings which log measurements of precipitation and which report data every five minutes. Here you find the link to the Boston Water and Sewer Commission’s interface to the rainfall data, which is updated continually. You can search for rainfall data going as far back as 1999, depending on the year of installation for the various gauges.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset contains records from the Town of Cary, NC Internet-of-Things rain gauges. This dataset contains 60 days' worth of data.Used as a part of the Stormwater Monitoring Dashboard
The NOAA Cooperative Observer Program (COOP) 15-Minute Precipitation Data consists of quality controlled precipitation amounts, which are measurements of 15 minute accumulation of precipitation, including rain and snow for approximately 2,000 observing stations around the country, and several U.S. territories in the Caribbean and Pacific operated or managed by the NOAA National Weather Service (NWS). Stations are primary, secondary, or cooperative observer sites that have the capability to measure precipitation at 15 minute intervals. This dataset contains 15-minute precipitation data (reported 4 times per hour, if precipitation occurred) for U.S. stations along with selected non-U.S. stations in U.S. territories and associated nations. It includes major city locations and many small town locations. Daily total precipitation is also included as part of the data record. The dataset period of record is from May 1970 to December 2013. The dataset is archived by the NOAA National Centers for Environmental Information (NCEI).
Australian Bureau of Meteorology assembled this dataset of 191 Australian rainfall stations for the purpose of climate change monitoring and assessment. These stations were selected because they are believed to be the highest quality and most reliable long-term rainfall stations in Australia. The longest period of record is August 1840 to December 1990, but the actual periods vary by individual station. Each data record in the dataset contains at least a monthly precipitation total, and most records also have daily data as well.
In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.