Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The monthly mean temperature data presented in this dataset was obtained from the Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis, which was loaded into Python using xarray. The data was then filtered to include only the latitude and longitude coordinates corresponding to each city in the dataset. In order to select the nearest location to each city, the 'select' method with the nearest point was used, resulting in temperature data that may not be exactly at the city location. The data is presented on a 0.5x0.5 degree grid across the globe.
The temperature data provides a valuable resource for time series analysis, and if you are interested in obtaining temperature data for additional cities, please let me know. I will also be sharing the source code on GitHub for anyone who would like to reproduce the data or analysis.
Facebook
TwitterBased on current monthly figures, on average, German climate has gotten a bit warmer. The average temperature for January 2025 was recorded at around 2 degrees Celsius, compared to 1.5 degrees a year before. In the broader context of climate change, average monthly temperatures are indicative of where the national climate is headed and whether attempts to control global warming are successful. Summer and winter Average summer temperature in Germany fluctuated in recent years, generally between 18 to 19 degrees Celsius. The season remains generally warm, and while there may not be as many hot and sunny days as in other parts of Europe, heat waves have occurred. In fact, 2023 saw 11.5 days with a temperature of at least 30 degrees, though this was a decrease compared to the year before. Meanwhile, average winter temperatures also fluctuated, but were higher in recent years, rising over four degrees on average in 2024. Figures remained in the above zero range since 2011. Numbers therefore suggest that German winters are becoming warmer, even if individual regions experiencing colder sub-zero snaps or even more snowfall may disagree. Rain, rain, go away Average monthly precipitation varied depending on the season, though sometimes figures from different times of the year were comparable. In 2024, the average monthly precipitation was highest in May and September, although rainfalls might increase in October and November with the beginning of the cold season. In the past, torrential rains have led to catastrophic flooding in Germany, with one of the most devastating being the flood of July 2021. Germany is not immune to the weather changing between two extremes, e.g. very warm spring months mostly without rain, when rain might be wished for, and then increased precipitation in other months where dry weather might be better, for example during planting and harvest seasons. Climate change remains on the agenda in all its far-reaching ways.
Facebook
TwitterThe monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in August 2025, the average temperature across the North American country stood at 22.98 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.
Facebook
TwitterThe average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains monthly climate records for all states in Mexico from January 1985 to September 2025. It includes both temperature and precipitation data, with values provided in metric and imperial units. The dataset was compiled to support climate analysis, trend studies, and data visualization projects related to environmental conditions across Mexico.Temperature Data:Provided in both Celsius and Fahrenheit, with three key metrics:Minimum average temperature for the monthMaximum average temperature for the monthOverall mean temperature for the monthPrecipitation Data:Available in both millimeters and inches:Monthly total precipitation in millimetersMonthly total precipitation in inchesAdditional Components:A visualization script for generating temperature trend charts efficientlyA sample chart illustrating temperature evolution in Mexico CityA requirements.txt file listing dependencies for running the visualization scriptData Source:The temperature and precipitation data were sourced from the Mexican National Meteorological Service (SMN):https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluviasThis dataset is valuable for:Long-term climate change analysisRegional environmental studiesData-driven policy planningEducational and research purposes in meteorology and climatology
Facebook
TwitterBy Gary Hoover [source]
This dataset contains all the record-breaking temperatures for your favorite US cities in 2015. With this information, you can prepare for any unexpected weather that may come your way in the future, or just revel in the beauty of these high heat spells from days past! With record highs spanning from January to December, stay warm (or cool) with these handy historical temperature data points
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains the record high temperatures for various US cities during the year of 2015. The dataset includes columns for each individual month, along with column for the records highs over the entire year. This data is sourced from www.weatherbase.com and can be used to analyze which cities experienced hot summers, or compare temperature variations between different regions.
Here are some useful tips on how to work with this dataset: - Analyze individual monthly temperatures - this dataset allows you to compare high temperatures across months and locations in order to identify which areas experienced particularly hot summers or colder winters.
- Compare annual versus monthly data - use this data to compare average annual highs against monthly highs in order to understand temperature trends at a given location throughout all four seasons of a single year, or explore how different regions vary based on yearly weather patterns as well as across given months within any one year; - Heatmap analysis - use this data plot temperature information in an interactive heatmap format in order to pinpoint particular regions that experience unique weather conditions or higher-than-average levels of warmth compared against cooler pockets of similar size geographic areas; - Statistically model the relationships between independent variables (temperature variations by month, region/city and more!) and dependent variables (e.g., tourism volumes). Use regression techniques such as linear models (OLS), ARIMA models/nonlinear transformations and other methods through statistical software such as STATA or R programming language;
- Look into climate trends over longer periods - adjust time frames included in analyses beyond 2018 when possible by expanding upon the monthly station observations already present within the study timeframe utilized here; take advantage of digitally available historical temperature readings rather than relying only upon printed reportsWith these helpful tips, you can get started analyzing record high temperatures for US cities during 2015 using our 'Record High Temperatures for US Cities' dataset!
- Create a heat map chart of US cities representing the highest temperature on record for each city from 2015.
- Analyze trends in monthly high temperatures in order to predict future climate shifts and weather patterns across different US cities.
- Track and compare monthly high temperature records for all US cities to identify regional hot spots with higher than average records and potential implications for agriculture and resource management planning
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: Highest temperature on record through 2015 by US City.csv | Column name | Description | |:--------------|:--------------------------------------------------------------| | CITY | Name of the city. (String) | | JAN | Record high temperature for the month of January. (Integer) | | FEB | Record high temperature for the month of February. (Integer) | | MAR | Record high temperature for the month of March. (Integer) | | APR | Record high temperature for the month of April. (Integer) | | MAY | Record high temperature for the month of May. (Integer) | | JUN | Record high temperature for the month of June. (Integer) | | JUL | Record high temperature for the month of July. (Integer) | | AUG | Record high temperature for the month of August. (Integer) | | SEP | Record high temperature for the month of September. (Integer) | | OCT | Record high temperature for the month of October. (Integer) | | ...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains observations representing the average monthly climate for each city. Since the data in this dataset are monthly averages, the time period covered by the data spans from creating the website where data is scraped (1996) to this year (2023). This dataset consists of 481 observations and 8 variables per observation. Below is a small extract of them:
o month: Refers to the month being described.
o temp_media: The average of the average temperatures for that month (for the specific location being described).
o temp_max: The average of the maximum temperatures for that month (for the specific location being described).
o temp_min: The average of the minimum temperatures for that month (for the specific location being described).
o rain_days: Average number of rainy days for that month (for the specific location being described).
o rain_accum: Average rain accumulation for that month (for the specific location being described).
o avg_wind: Average wind speed for that month (for the specific location being described).
o place: The city to which the observation refers.
Facebook
TwitterIncludes Average Temperature of US States from Jan 1950 - Aug 2022
Source: https://www.ncei.noaa.gov/cag/statewide/mapping/110/tavg/202208/1/value
References: NOAA National Centers for Environmental information, Climate at a Glance: Statewide Mapping, Average Temperature, published September 2022, retrieved on October 8, 2022 from https://www.ncdc.noaa.gov/cag/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterThe U.S. Monthly Climate Normals for 2006 to 2020 are 15-year averages of meteorological parameters that provide users supplemental normals for specialized applications for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Monthly Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs)). All data utilized in the computation of the 2006-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily and -Monthly datasets. Temperatures were homogenized, adjusted for time-of-observation, and made serially complete where possible based on information from nearby stations. Precipitation totals were also made serially complete where possible based using nearby stations. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.
Facebook
TwitterThe highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
Facebook
TwitterThe Monthly Climate Normals for 1991 to 2020 are 30-year averages of meteorological parameters that provide users the information needed to understand typical climate conditions for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Monthly Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs)). All data utilized in the computation of the 1991-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily and -Monthly datasets. Temperatures were homogenized, adjusted for time-of-observation, and made serially complete where possible based on information from nearby stations. Precipitation totals were also made serially complete where possible based using nearby stations. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.
Facebook
TwitterThe U.S. Monthly Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as well as U.S. territories, commonwealths, the Compact of Free Association nations, and one station in Canada. NOAA Climate Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations across the United States. As many NWS stations as possible are used, including those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the Climate Reference Network (CRN). The comprehensive U.S. Climate Normals dataset includes various derived products including daily air temperature normals (including maximum and minimum temperature normal, heating and cooling degree day normal, and others), precipitation normals (including snowfall and snow depth, percentiles, frequencies and other), and hourly normals (all normal derived from hourly data including temperature, dew point, heat index, wind chill, wind, cloudiness, heating and cooling degree hours, pressure normals). In addition to the standard set of normals, users also can find "agricultural normals", which are used in many industries, including but not limited to construction, architecture, pest control, etc. These supplemental "agricultural normals" include frost-freeze date probabilities, growing degree day normals, probabilities of reaching minimum temperature thresholds, and growing season length normals. Users can access the data either by product or by station. Included in the dataset is extensive documentation to describe station metadata, filename descriptions, and methodology of producing the data. All data utilized in the computation of the 1981-2010 Climate Normals were taken from the ISD Lite (a subset of derived Integrated Surface Data), the Global Historical Climatology Network-Daily dataset, and standardized monthly temperature data (COOP). These source datasets (including intermediate datasets used in the computation of products) are also archived at the NOAA NCDC.
Facebook
TwitterThis dataset provides Daymet Version 4 R1 monthly climate summaries derived from Daymet Version 4 R1 daily data at a 1 km x 1 km spatial resolution for five Daymet variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Monthly averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and monthly totals are provided for the precipitation variable. Each data file is yearly by variable with 12 monthly time steps and covers the same period of record as the Daymet V4 R1 daily data. The monthly climatology files are derived from the larger datasets of daily weather parameters produced on a 1 km x 1 km grid for North America, Hawaii, and Puerto Rico. Separate monthly files are provided for the land areas of continental North America (Canada, the United States, and Mexico), Hawaii, and Puerto Rico. Data are distributed in standardized Climate and Forecast (CF)-compliant netCDF (.nc) and Cloud-Optimized GeoTIFF (.tif) formats. In Version 4 R1 (ver 4.1), all 2020 and 2021 files (60 total) were updated to improve predictions especially in high-latitude areas. It was found that input files used for deriving 2020 and 2021 data had, for a significant portion of Canadian weather stations, missing daily variable readings for the month of January. NCEI has corrected issues with the Environment Canada ingest feed which led to the missing readings. The revised 2020 and 2021 Daymet V4 R1 files were derived with new GHCNd inputs. Files outside of 2020 and 2021 have not changed from the previous V4 release.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
If you are familiar with Ghanaian temperatures, you must know that is averagely a warm or relatively hot country. Do you ever wonder how the average temperatures have been over time and how the climate has changed with it? This is a dataset for two cities, Accra and Kumasi with their temperatures collected over time.
This dataset is as said the average monthly temperatures for both cities collected over time. This allows you to perform data analysis with the time-series data and forecast where those two cities' climate are headed with machine learning.
The content of the data is provided by NOAA GHCN V4 and then processed by NASA's GISTEMP V4.
The data files contain the cities' temperatures for the stations named in the files (Accra & Kumasi). The temperatures are the average for every month in the years collected. Some measurements are calculated in the dataset; metANN and D-J-F. No information is provided for these fields and it is better to refer to NASA GISTEMP for more information on it.
These datasets are provided through NASA's GISTEMP V4 and recorded by NOAA GHCN V4.
Facebook
TwitterThe climate data are related to Albany and they cover a period that goes from 01/01/2015 to 05/31/2022. They include wind, temperature, pressure, humidity and precipitation data. Four datasets are included:
For more information, check out here: https://www.ncei.noaa.gov/pub/data/cdo/documentation/LCD_documentation.pdf.
The following values can be encountered: s = suspect value (appears together with value). T = trace precipitation amount or snow depth (an amount too small to measure, usually < 0.005 inches water equivalent) (appears instead of numeric value). M = missing value (appears instead of value). VRB = variable wind direction. Remember to upvote if you found the dataset useful :).
The dataset can be used to perform supervised learning to predict one of the numerical features in the dataset, given a set of selected input features.
You can perform an exploratory data analysis of the data, working with Pandas or Numpy(if you use Python).
Interesting visualizations can be performed using, for instance, Python libraries like Matplotlib.
A time series analysis and forecasting can be performed too.
Moreover, this dataset is very good to practice queries using SQL or Pandas.
The data were fetched from NCOI website. The data were split in 4 columns according to the REPORT_TYPE. Rows containing null values were dropped and empty or partially empty columns were not considered.
DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce DOC/NOAA/NWS > National Weather Service, NOAA, U.S. Department of Commerce DOD/USAF > U.S. Air Force, U.S. Department of Defense DOT/FAA > Federal Aviation Agency, U.S. Department of Transportation
Facebook
TwitterA long-term timeseries of monthly averaged weather at Palmer Station, Antarctic, was created by combining calculated averages of daily weather from 1989-present with additional historical temperature measurements made between 1974-1989. The selected variables in this dataset include temperature, air pressure, precipitation, sea surface temperature, and wind speed. Monthly averages (means) are made for each calendar month, and dated with the month's start date. Historical monthly average temperatures (through March 1989) are from "Baker, K.S. (1996), Palmer LTER: Palmer Station air temperature 1974 to 1996." Monthly averages from April 1989 onwards are computed from the daily weather averages calculated at Palmer Station and made available by the Antarctic Meteorological Research Center (AMRC) archive at https://amrdcdata.ssec.wisc.edu/group/palmer-station/ The daily averages are available in aggregate form as PAL dataset #28 (knb-lter-pal.28.10), from which this dataset was generated.
Facebook
TwitterAverage monthly temperatures in Manaus, Brazil remain incredibly stable and warm throughout the year. This is characteristic of tropical climates, which see very little seasonal variation due to their proximity to the equator, as well as the self-regulatory nature of rainforest climates. In contrast, the examples of locations in the far north of Canada or in Finland are much further from the equator and are therefore much colder, and they also see the most seasonal variation.
Facebook
TwitterMeasurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service. The data updates monthly, usually around the 15th of the following month. For instance, the January data will become available on or about February 15th. The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report that summarizes the data is released each month (and end of the year) by NOAA NCEI is available here. GHCN monthly mean averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here. What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for the past month. Analysis: The full archive from 1880 – present is available here, and can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: What was the average temperature for the month? A: Colors show the average monthly temperature across the contiguous United States. White and very light areas had average temperatures near 50°F. Blue areas on the map were cooler than 50°F; the darker the blue, the cooler the average temperature. Orange to red areas were warmer than 50°F; the darker the shade, the warmer the monthly average temperature. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). Q: What do the colors mean? A: Shades of blue show areas that had monthly average temperatures below 50°F. The darker the shade of blue, the lower the average temperature. Areas shown in shades of orange and red had average temperatures above 50°F. The darker the shade of orange or red, the higher the average temperature. White or very light colors show areas where the average temperature was near 50°F. Q: Why do these data matter? A: The 5x5km NClimGrid data allow scientists to report on recent temperature conditions and track long-term trends at a variety of spatial scales. The gridded cells are used to create statewide, regional and national snapshots of climate conditions. Energy companies use this information to estimate demand for heating and air conditioning. Agricultural businesses also use these data to optimize timing of planting, harvesting, and putting livestock to pasture. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products; to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions) NCEI Monthly National Analysis) Climate at a Glance - Data Information) NCEI Climate Monitoring - All Products Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-us-monthly-averageThis upload includes two additional files:* Temperature - US Monthly Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots.* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The monthly mean temperature data presented in this dataset was obtained from the Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis, which was loaded into Python using xarray. The data was then filtered to include only the latitude and longitude coordinates corresponding to each city in the dataset. In order to select the nearest location to each city, the 'select' method with the nearest point was used, resulting in temperature data that may not be exactly at the city location. The data is presented on a 0.5x0.5 degree grid across the globe.
The temperature data provides a valuable resource for time series analysis, and if you are interested in obtaining temperature data for additional cities, please let me know. I will also be sharing the source code on GitHub for anyone who would like to reproduce the data or analysis.