Facebook
TwitterThe highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
Facebook
TwitterEngland's highest monthly mean air temperatures are typically recorded in July and August of each year. Since 2015, the warmest mean temperature was measured in July 2018 at 18.8 degrees Celsius. On the other hand, February of that same year registered the coolest temperature, at 2.6 degrees Celsius. In September 2025, the mean air temperature was 13.8 degrees Celsius, matching the figure recorded the same month the previous year. The English weather England is the warmest region in the United Kingdom and the driest. In 2024, the average annual temperature in England amounted to 10.73 degrees Celsius – around 1.1 degrees above the national mean. That same year, precipitation in England stood at about 1,020 millimeters. By contrast, Scotland – the wettest region in the UK – recorded over 1,500 millimeters of rainfall in 2024. Temperatures on the rise Throughout the last decades, the average temperature in the United Kingdom has seen an upward trend, reaching a record high in 2022. Global temperatures have experienced a similar pattern over the same period. This gradual increase in the Earth's average temperature is primarily due to various human activities, such as burning fossil fuels and deforestation, which lead to the emission of greenhouse gases. This phenomenon has severe consequences, including more frequent and intense weather events, rising sea levels, and adverse effects on human health and the environment.
Facebook
TwitterThese statistics show quarterly and monthly weather trends for:
They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.
Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.
All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.
If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.
Facebook
TwitterSince January 2015, the highest maximum monthly temperature in England was measured in July 2018, at 24.8 degrees Celsius. July temperatures declined in the following years, and measured 22.9 degrees Celsius in 2025. Further information about the weather in the United Kingdom can be found here.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily temperature data contain maximum and minimum temperatures (air, grass and concrete slab) measured over a period of up to 24 hours. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM, DLY3208 or AWSDLY messages. The data span from 1853 to 2023. For details on measurement techniques, including calibration information and changes in measurements, see section 5.2 of the MIDAS User Guide linked to from this record. Soil temperature data may be found in the UK soil temperature datasets linked from this record.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily temperature observations within the full MIDAS collection.
Facebook
TwitterMonthly temperature deviations from the long-term mean in the United Kingdom have varied greatly in recent years. In August 2025, average temperatures were 1.1 degrees Celsius warmer than the long-term mean. In comparison, temperatures in August 2024 were 0.3 degrees Celsius warmer than the long-term mean. The most notable deviation during this period was in December 2015, when temperatures were 4.3 degrees warmer than normal.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This file contains average rainfall (mm) and average temperature (centigrade) for the North East England and East England for period 2010-2019.
This dataset shows the average rainfall in millimeters and average temperature in centigrade by month, year, and meteorological season. It also has an annual figure for each year.
Facebook
TwitterWhat does the data show?
This data shows monthly averages of surface temperature (°C) for 2050-2079 from the UKCP18 regional climate projections. The data is for the high emissions scenario (RCP8.5).
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for the average over the period. They are named 'tas' (temperature at surface), the month, and 'upper' 'median' or 'lower'. E.g. 'tas July Median' is the median value for July.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas January Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the monthly averages of temperature for 2050-2079 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
tas_rcp85_land-rcm_uk_12km_12_mon-30y_200912-207911.nc (median)
tas_rcp85_land-rcm_uk_12km_05_mon-30y_200912-207911.nc (lower)
tas_rcp85_land-rcm_uk_12km_04_mon-30y_200912-207911.nc (upper)
UKCP18 v20190731 (downloaded 04/11/2021)
Useful links
Further information on the UK Climate Projections (UKCP). Further information on understanding climate data within the Met Office Climate Data Portal
Facebook
TwitterThe annual mean temperature in the United Kingdom has fluctuated greatly since 1990. Temperatures during this period were at their highest in 2022, surpassing ** degrees Celsius. In 2010, the mean annual temperature stood at **** degrees, the lowest recorded during this time. Daily temperatures Average daily temperatures have remained stable since the turn of the century, rarely dropping below ** degrees Celsius. In 2010, they dropped to a low of **** degrees Celsius. The peak average daily temperature was recorded in 2022 when it reached **** degrees. This was an increase of *** degree Celsius compared to the long-term mean, and the most positive deviation during the period of consideration. Highs and lows The maximum average temperature recorded across the UK since 2015 was in July 2018. This month saw a maximum temperature of **** degrees Celsius. In comparison, the lowest monthly minimum temperature was in February of the same year, at just minus *** degrees. This was an especially cold February, as the previous year the minimum temperature for this month was *** degrees.
Facebook
Twitterhttps://eidc.ceh.ac.uk/licences/lakesEcology/plainhttps://eidc.ceh.ac.uk/licences/lakesEcology/plain
This dataset consists of monthly mean inshore surface water temperature (degrees C) data from Windermere, a lake in northern England. Data collection began in 1933, but data are presented here from 1946 onwards. The data were initially collected by the Freshwater Biological Association (FBA), then by CEH and its predecessor Institute of Freshwater Ecology (IFE) from 1989 to 2003, and subsequently again by FBA.
Facebook
TwitterAll information regarding MET Office copyright policy can be found at: https://www.metoffice.gov.uk/about-us/legal#licences All data was sourced from: https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data
The MET Office has been responsible for monitoring UK Weather since it's inception in 1854. 36 stations in the UK (often located in RAF bases) gather information that is used to predict future weather patterns and issue public advice. More recently, these large datasets have become useful to investigate how the UK climate has changed over the past 150+ years.
Columns: - year: Year in which the measurements were taken - month: Month in which the measurements were taken - tmax: Mean daily maximum temperature (°C) - tmin: Mean daily minimum temperature (°C) - af: Days of air frost recorded that month (days) - rain: Total rainfall (mm) - sun: Total sunshine duration (hours) - station: Station location where measurement was recorded
Data was collected from the MET Office website as separate station csv files and combined to one data frame with a station label assigned. All characters (*,#,---) that denoted things such as the equipment used were removed from the set. Some sections include significant amounts of NA values. Note that a 0 entry does not denote an NA value but a score of 0 in that measured field.
Has the UK climate changed since the Victorian era? How does any climate change impact the UK in terms of weather risks? Are some regions more affected than others?
A good starting point: The monthly mean temperature is calculated from the average of the mean daily maximum and mean daily minimum temperature i.e. (tmax+tmin)/2.
Facebook
TwitterWhat does the data show?
This data shows the monthly averages of surface temperature (°C) for 1981-2010 from CRU TS (v. 4.06) dataset. It is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator. This is the same as the 60km grid used by UKCP18 global datasets.
What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'tas' (temperature at surface) and the month. E.g. ‘tas March’ is the average of the daily average surface air temperatures in March throughout 1981-2010.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas January’ values.
Data source
CRU TS v. 4.06 - (downloaded 12/07/22)
Useful links
Further information on CRU TS Further information on understanding climate data within the Met Office Climate Data Portal
Facebook
TwitterThis dataset contains UK Met Office Daily Weather Reports (DWR) from ten sites from the UK Met Office Monthly Weather Records (1884-1993), using the recently-scanned UK Met Office Monthly Weather Reports (MWR). The data are presented as is, with no attempt to provide any corrections or calibration. Approximately half the stations exhibit sharp drops in thunderdays at various points between 1960 and 1990. Comparison with nearby Met Office Integrated Data Archive System (MIDAS) stations suggests the low thunderdays are the result of changes in observing practice, rather than genuine changes in thunderstorm occurrence. These potential data issues limit interpretation of the long-term trends. DWR contain extensive logs of UK thunderstorm activity, in the form of thunderday observations. To date, only a very small fraction of these data have been digitised as part of the MIDAS dataset, and exclusively after 1950.
Facebook
TwitterWhat does the data show?
This data shows the monthly averages of surface temperature (°C) for 2040-2069 using a combination of the CRU TS (v. 4.06) and UKCP18 global RCP2.6 datasets. The RCP2.6 scenario is an aggressive mitigation scenario where greenhouse gas emissions are strongly reduced.
The data combines a baseline (1981-2010) value from CRU TS (v. 4.06) with an anomaly from UKCP18 global. Where the anomaly is the change in temperature at 2040-2069 relative to 1981-2010.
The data is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator.
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'tas' (temperature at surface), the month and ‘upper’ ‘median’ or ‘lower’. E.g. ‘tas Mar Lower’ is the average of the daily average temperatures in March throughout 2040-2069, in the second lowest ensemble member.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas Jan Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
To select which ensemble members to use, the monthly averages of surface temperature for the period 2040-2069 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
CRU TS v. 4.06 - (downloaded 12/07/22)
UKCP18 v.20200110 (downloaded 17/08/22)
Useful links
Further information on CRU TS Further information on the UK Climate Projections (UKCP) Further information on understanding climate data within the Met Office Climate Data Portal
Facebook
TwitterThe lowest average minimum temperature recorded in England since 2015 was in February 2018, when temperatures dropped to -0.4 degrees Celsius. In comparison, in February 2025 the temperature was 2.2 degrees Celsius.Further information about the weather in the United Kingdom can be found here.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By data.world's Admin [source]
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
To use this dataset, start by making sure you are familiar with the following fields: OrganisationName, OrganisationCode, PublishedDate, DurationFrom (start date of reported period), DurationTo (end date of reported period), LatestData (indicating if latest available data is provided or not), GeoName (name of geographical area being reported on), ReportingPeriodType (type of reporting period i.e monthly/yearly/seasonal etc.), Year, Rainfallmm(average rainfall in millimeters), Temp(average temperature in centigrade), Dataset Name(name of the dataset provided). These are all important pieces of information that must be known before delving into the other columns.
- Developing predictive models for drought and flooding with the help of average temperature and rainfall data
- Producing reports to inform farmers on various farming activities that need to be done depending on the climate conditions in the region
- Creating visualizations which can compare historical trends of average temperature and rainfall in different regions
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: average-rainfall-temperature-1.csv | Column name | Description | |:------------------------|:--------------------------------------------------------------------------------| | OrganisationName | Name of the organisation providing the data. (String) | | OrganisationCode | Code associated with the name of the organisation providing the data. (String) | | PublishedDate | Date when that particular set of data was published. (Date) | | DurationFrom | Start date of that respective period. (Date) | | DurationTo | End date of the respective period. (Date) | | LatestData | It specifies whether or not that particular set is available to you. (Boolean) | | GeoName | Place/location where these climatic conditions exists. (String) | | ReportingPeriodType | Specifies whether it is a monthly/yearly report. (String) | | Year | Indicates year for which these statistical values have been obtained. (Integer) | | Rainfallmm | Average rainfall in millimetres during specified period. (Float) | | Temp | Average temperature in centigrade during specified period. (Float) |
File: average-rainfall-temperature-metatdata-2.csv | Column name | Description | |:--------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Dataset Name | Name of the dataset. (String) | | Field | Details a certain aspect or parameter amongst numerous parameters present within a resultset. (String) | | Type | Whether its Numerical value or DoT notation. (String) | | Mandatory or Optional requirement (MOR) | This field tells us if we require anything specific while submitting our queries. (String) | | Field Description | A brief overvie...
Facebook
TwitterLondon Underground records temperatures across the Underground in order to inform our cooling initiatives. Platform temperatures on the deep Tube are routinely monitored using data loggers. Average monthly evening peak temperatures since 2013 are provided on this page. We are investing millions as part of a long-term programme to ensure we can deliver more services, and continue to introduce new trains to meet growing customer numbers whilst providing more comfortable journeys. We have implemented energy efficient solutions on new trains, which saves energy and reduces the heat generated. We have also removed heat from our station and tunnel environment by installing new ventilation or cooling solutions. On the Central line we have installed solar reflective material on the external surface of train roofs and solar reducing films on windows to minimise solar gains into the carriages. On the Victoria line we have doubled the capacity of thirteen ventilation shafts, which provide more air flow, as well as introduced regenerative braking (which returns power to the rails while the train is braking) on the new trains. We have also installed air cooling units and mechanical chillers at some key busy stations, such as Oxford Circus, and have been using groundwater underneath Victoria Tube station to provide cooling to the platforms. We are similarly using water from the aquifer underneath Green Park to provide cooling for that Tube station. In addition, we have upgraded existing ventilation fans and installed new fans at a number of stations across the network. As part of this work to make customer journeys more comfortable, we are also working to reduce temperatures inside carriages. 192 new air-conditioned trains are now in operation on the Circle, District, Hammersmith & City and Metropolitan lines. Note: Sub-surface lines are the Circle, Hammersmith & City, District and Metropolitan lines.
Facebook
TwitterWhat does the data show?
The data shows monthly averages of surface temperature (°C) for 1991-2020 from HadUK gridded data. It is provided on a 12km British National Grid (BNG).
Limitations of the dataWe recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'tas' (temperature at surface) and the month. E.g. 'tas March' is the average surface temperature for March in the period 1991-2020.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas January’ values.
Data source:
·
Version: HadUK-Grid v1.1.0.0
(downloaded 21/06/2022)
·
Source:
https://catalogue.ceda.ac.uk/uuid/652cea3b8b4446f7bff73be0ce99ba0f
·
Filename: tas_hadukgrid_uk_12km_mon-30y_199101-202012.nc
Useful links
·
Further information on HadUK-Grid
·
Further information on understanding climate data within
the Met Office Climate Data Portal
Facebook
TwitterThis dataset contains a set of observed monthly climate variables on a 5km resolution grid. The observations are derived from 16 daily climate variables that have been averaged (e.g. daily maximum temperature) or summed (e.g. monthly total precipitation) over calendar months. The input station data originate from the Met Office Integrated Data Archive System (A version of MIDAS is also available through CEDA, although incremental developments to the database such as quality control and data recovery activities may result in some differences compared to the database at the time of production of the UKCP09 data). The gridding process accounts for effects such as latitude, longitude, altitude, coastal influence, and the effect of urban land through the use of normalisation with respect to monthly 1961 – 1990 climate normals, and in the case of some variables a regression model. For more details about the construction see Perry and Hollis (2005). The data are provide in CF-1.5 compliant NetCDF format. The data are additionally provided in ESRI-ascii format, suitable for ingestion in GIS applications, and a simple timeseries format for users requiring a limited number of points.
Facebook
TwitterWhat does the data show?
This data shows the monthly averages of maximum surface temperature (°C) for 2040-2069 using a combination of the CRU TS (v. 4.06) and UKCP18 global RCP2.6 datasets. The RCP2.6 scenario is an aggressive mitigation scenario where greenhouse gas emissions are strongly reduced.
The data combines a baseline (1981-2010) value from CRU TS (v. 4.06) with an anomaly from UKCP18 global. Where the anomaly is the change in temperature at 2040-2069 relative to 1981-2010.
The data is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator.
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'tmax' (temperature maximum), the month and ‘upper’ ‘median’ or ‘lower’. E.g. ‘tmax Mar Lower’ is the average of the daily minimum temperatures in March throughout 2040-2069, in the second lowest ensemble member.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tmax Jan Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
To select which ensemble members to use, the monthly averages of maximum surface temperature for the period 2040-2069 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
CRU TS v. 4.06 - (downloaded 12/07/22)
UKCP18 v.20200110 (downloaded 17/08/22)
Useful links
Further information on CRU TS Further information on the UK Climate Projections (UKCP) Further information on understanding climate data within the Met Office Climate Data Portal
Facebook
TwitterThe highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.