In January 2025 mobile devices excluding tablets accounted for over ** percent of web page views worldwide. Meanwhile, over ** percent of webpage views in Africa were generated via mobile. In contrast, just over half of web traffic in North America still took place via desktop connections with mobile only accounting for **** percent of total web traffic. While regional infrastructure remains an important factor in broadband vs. mobile coverage, most of the world has had their eyes on the recent 5G rollout across the globe, spearheaded by tech-leaders China and the United States. The number of mobile 5G subscriptions worldwide is forecast to reach more than ***** billion by 2028. Social media: room for growth in Africa and southern Asia Overall, more than ** percent of the world’s mobile internet subscribers are also active on social media. A fast-growing market, with newcomers such as TikTok taking the world by storm, marketers have been cashing in on social media’s reach. Overall, social media penetration is highest in Europe and America while in Africa and southern Asia, there is still room for growth. As of 2021, Facebook and Google-owned YouTube are the most popular social media platforms worldwide. Facebook and Instagram are most effective With nearly ***** billion users, it is no wonder that Facebook remains the social media avenue of choice for the majority of marketers across the world. Instagram, meanwhile, was the second most popular outlet. Both platforms are low-cost and support short-form content, known for its universal consumer appeal and answering to the most important benefits of using these kind of platforms for business and advertising purposes.
This data set contains internet traffic data captured by an Internet Service Provider (ISP) using Mikrotik SDN Controller and packet sniffer tools. The data set includes traffic from over 2000 customers who use Fibre to the Home (FTTH) and Gpon internet connections. The data was collected over a period of several months and contains all traffic in its original format with headers and packets.
The data set contains information on inbound and outbound traffic, including web browsing, email, file transfers, and more. The data set can be used for research in areas such as network security, traffic analysis, and machine learning.
**Data Collection Method: ** The data was captured using Mikrotik SDN Controller and packet sniffer tools. These tools capture traffic data by monitoring network traffic in real-time. The data set contains all traffic data in its original format, including headers and packets.
**Data Set Content: ** The data set is provided in a CSV format and includes the following fields:
MAC Protocol Examples 802.2 - 802.2 Frames (0x0004) arp - Address Resolution Protocol (0x0806) homeplug-av - HomePlug AV MME (0x88E1) ip - Internet Protocol version 4 (0x0800) ipv6 - Internet Protocol Version 6 (0x86DD) ipx - Internetwork Packet Exchange (0x8137) lldp - Link Layer Discovery Protocol (0x88CC) loop-protect - Loop Protect Protocol (0x9003) mpls-multicast - MPLS multicast (0x8848) mpls-unicast - MPLS unicast (0x8847) packing-compr - Encapsulated packets with compressed IP packing (0x9001) packing-simple - Encapsulated packets with simple IP packing (0x9000) pppoe - PPPoE Session Stage (0x8864) pppoe-discovery - PPPoE Discovery Stage (0x8863) rarp - Reverse Address Resolution Protocol (0x8035) service-vlan - Provider Bridging (IEEE 802.1ad) & Shortest Path Bridging IEEE 802.1aq (0x88A8) vlan - VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq with NNI compatibility (0x8100)
**Data Usage: ** The data set can be used for research in areas such as network security, traffic analysis, and machine learning. Researchers can use the data to develop new algorithms for detecting and preventing cyber attacks, analyzing internet traffic patterns, and more.
**Data Availability: ** If you are interested in using this data set for research purposes, please contact us at asfandyar250@gmail.com for more information and references. The data set is available for download on Kaggle and can be accessed by researchers who have obtained permission from the ISP.
We hope this data set will be useful for researchers in the field of network security and traffic analysis. If you have any questions or need further information, please do not hesitate to contact us.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5985737%2F61c81ce9eb393f8fc7c15540c9819b95%2FData.PNG?generation=1683750473536727&alt=media" alt="">
You can use Wireshark or other software's to view files
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.
Please refer to the original data article for further data description: Jan Luxemburk et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines, Data in Brief, 2023, 108888, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.108888. We recommend using the CESNET DataZoo python library, which facilitates the work with large network traffic datasets. More information about the DataZoo project can be found in the GitHub repository https://github.com/CESNET/cesnet-datazoo. The QUIC (Quick UDP Internet Connection) protocol has the potential to replace TLS over TCP, which is the standard choice for reliable and secure Internet communication. Due to its design that makes the inspection of QUIC handshakes challenging and its usage in HTTP/3, there is an increasing demand for research in QUIC traffic analysis. This dataset contains one month of QUIC traffic collected in an ISP backbone network, which connects 500 large institutions and serves around half a million people. The data are delivered as enriched flows that can be useful for various network monitoring tasks. The provided server names and packet-level information allow research in the encrypted traffic classification area. Moreover, included QUIC versions and user agents (smartphone, web browser, and operating system identifiers) provide information for large-scale QUIC deployment studies. Data capture The data was captured in the flow monitoring infrastructure of the CESNET2 network. The capturing was done for four weeks between 31.10.2022 and 27.11.2022. The following list provides per-week flow count, capture period, and uncompressed size: W-2022-44 Uncompressed Size: 19 GB Capture Period: 31.10.2022 - 6.11.2022 Number of flows: 32.6M W-2022-45 Uncompressed Size: 25 GB Capture Period: 7.11.2022 - 13.11.2022 Number of flows: 42.6M W-2022-46 Uncompressed Size: 20 GB Capture Period: 14.11.2022 - 20.11.2022 Number of flows: 33.7M W-2022-47 Uncompressed Size: 25 GB Capture Period: 21.11.2022 - 27.11.2022 Number of flows: 44.1M CESNET-QUIC22 Uncompressed Size: 89 GB Capture Period: 31.10.2022 - 27.11.2022 Number of flows: 153M Data description The dataset consists of network flows describing encrypted QUIC communications. Flows were created using ipfixprobe flow exporter and are extended with packet metadata sequences, packet histograms, and with fields extracted from the QUIC Initial Packet, which is the first packet of the QUIC connection handshake. The extracted handshake fields are the Server Name Indication (SNI) domain, the used version of the QUIC protocol, and the user agent string that is available in a subset of QUIC communications. Packet Sequences Flows in the dataset are extended with sequences of packet sizes, directions, and inter-packet times. For the packet sizes, we consider payload size after transport headers (UDP headers for the QUIC case). Packet directions are encoded as ±1, +1 meaning a packet sent from client to server, and -1 a packet from server to client. Inter-packet times depend on the location of communicating hosts, their distance, and on the network conditions on the path. However, it is still possible to extract relevant information that correlates with user interactions and, for example, with the time required for an API/server/database to process the received data and generate the response to be sent in the next packet. Packet metadata sequences have a length of 30, which is the default setting of the used flow exporter. We also derive three fields from each packet sequence: its length, time duration, and the number of roundtrips. The roundtrips are counted as the number of changes in the communication direction (from packet directions data); in other words, each client request and server response pair counts as one roundtrip. Flow statistics Flows also include standard flow statistics, which represent aggregated information about the entire bidirectional flow. The fields are: the number of transmitted bytes and packets in both directions, the duration of flow, and packet histograms. Packet histograms include binned counts of packet sizes and inter-packet times of the entire flow in both directions (more information in the PHISTS plugin documentation There are eight bins with a logarithmic scale; the intervals are 0-15, 16-31, 32-63, 64-127, 128-255, 256-511, 512-1024, >1024 [ms or B]. The units are milliseconds for inter-packet times and bytes for packet sizes. Moreover, each flow has its end reason - either it was idle, reached the active timeout, or ended due to other reasons. This corresponds with the official IANA IPFIX-specified values. The FLOW_ENDREASON_OTHER field represents the forced end and lack of resources reasons. The end of flow detected reason is not considered because it is not relevant for UDP connections. Dataset structure The dataset flows are delivered in compressed CSV files. CSV files contain one flow per row; data columns are summarized in the provided list belo...
https://coolest-gadgets.com/privacy-policyhttps://coolest-gadgets.com/privacy-policy
Internet Traffic from Mobile Devices Statistics: More than half of our time online is spent on mobile phones, and wireless Internet has changed the way we use technology. This shift has influenced both devices and apps while also helping digital growth in developing countries. By mid-2024, about 96% of people worldwide were using mobile devices to go online.
The fast increase in mobile internet usage has given businesses and advertisers a better way to promote their brands and reach more people. With mobile traffic growing quickly, just making a website work on mobile is not enough anymore. Competition is stronger, so marketing and content must be designed specifically for mobile users to stay ahead. We shall shed more light on Internet Traffic from Mobile Devices Statistics through this article.
According to data collected in the first half of 2021, five leading tech firms accounted for more than half of global data traffic. Google accounted for around a fifth of global data traffic, with its share including traffic driven by its subsidiary video platform YouTube. Google is followed by Facebook with a share of around 15 percent, while Netflix accounts for around 9 percent of traffic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Network traffic datasets created by Single Flow Time Series Analysis
Datasets were created for the paper: Network Traffic Classification based on Single Flow Time Series Analysis -- Josef Koumar, Karel Hynek, Tomáš Čejka -- which was published at The 19th International Conference on Network and Service Management (CNSM) 2023. Please cite usage of our datasets as:
J. Koumar, K. Hynek and T. Čejka, "Network Traffic Classification Based on Single Flow Time Series Analysis," 2023 19th International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023, pp. 1-7, doi: 10.23919/CNSM59352.2023.10327876.
This Zenodo repository contains 23 datasets created from 15 well-known published datasets which are cited in the table below. Each dataset contains 69 features created by Time Series Analysis of Single Flow Time Series. The detailed description of features from datasets is in the file: feature_description.pdf
In the following table is a description of each dataset file:
File name Detection problem Citation of original raw dataset
botnet_binary.csv Binary detection of botnet S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014.
botnet_multiclass.csv Multi-class classification of botnet S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014.
cryptomining_design.csv Binary detection of cryptomining; the design part Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022
cryptomining_evaluation.csv Binary detection of cryptomining; the evaluation part Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022
dns_malware.csv Binary detection of malware DNS Samaneh Mahdavifar et al. Classifying Malicious Domains using DNS Traffic Analysis. In DASC/PiCom/CBDCom/CyberSciTech 2021, pages 60–67. IEEE, 2021.
doh_cic.csv Binary detection of DoH
Mohammadreza MontazeriShatoori et al. Detection of doh tunnels using time-series classification of encrypted traffic. In DASC/PiCom/CBDCom/CyberSciTech 2020, pages 63–70. IEEE, 2020
doh_real_world.csv Binary detection of DoH Kamil Jeřábek et al. Collection of datasets with DNS over HTTPS traffic. Data in Brief, 42:108310, 2022
dos.csv Binary detection of DoS Nickolaos Koroniotis et al. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst., 100:779–796, 2019.
edge_iiot_binary.csv Binary detection of IoT malware Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022.
edge_iiot_multiclass.csv Multi-class classification of IoT malware Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022.
https_brute_force.csv Binary detection of HTTPS Brute Force Jan Luxemburk et al. HTTPS Brute-force dataset with extended network flows, November 2020
ids_cic_binary.csv Binary detection of intrusion in IDS Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018.
ids_cic_multiclass.csv Multi-class classification of intrusion in IDS Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018.
ids_unsw_nb_15_binary.csv Binary detection of intrusion in IDS Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.
ids_unsw_nb_15_multiclass.csv Multi-class classification of intrusion in IDS Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.
iot_23.csv Binary detection of IoT malware Sebastian Garcia et al. IoT-23: A labeled dataset with malicious and benign IoT network traffic, January 2020. More details here https://www.stratosphereips.org /datasets-iot23
ton_iot_binary.csv Binary detection of IoT malware Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021
ton_iot_multiclass.csv Multi-class classification of IoT malware Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021
tor_binary.csv Binary detection of TOR Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017.
tor_multiclass.csv Multi-class classification of TOR Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017.
vpn_iscx_binary.csv Binary detection of VPN Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016.
vpn_iscx_multiclass.csv Multi-class classification of VPN Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016.
vpn_vnat_binary.csv Binary detection of VPN Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022
vpn_vnat_multiclass.csv Multi-class classification of VPN Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Streaming is by far the predominant type of traffic in communication networks. With thispublic dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3G/4G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.
Be ready for a cookieless internet while capturing anonymous website traffic data!
By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.
This product will include Anonymous IP Data and Web Traffic Data for B2B2C.
Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.
Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.
Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.
Check our product that has the most accurate Web Traffic Data for the B2B2C market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a set of network traffic traces in pcap/csv format captured from a single user. The traffic is classified in 5 different activities (Video, Bulk, Idle, Web, and Interactive) and the label is shown in the filename. There is also a file (mapping.csv) with the mapping of the host's IP address, the csv/pcap filename and the activity label.
Activities:
Interactive: applications that perform real-time interactions in order to provide a suitable user experience, such as editing a file in google docs and remote CLI's sessions by SSH. Bulk data transfer: applications that perform a transfer of large data volume files over the network. Some examples are SCP/FTP applications and direct downloads of large files from web servers like Mediafire, Dropbox or the university repository among others. Web browsing: contains all the generated traffic while searching and consuming different web pages. Examples of those pages are several blogs and new sites and the moodle of the university. Vídeo playback: contains traffic from applications that consume video in streaming or pseudo-streaming. The most known server used are Twitch and Youtube but the university online classroom has also been used. Idle behaviour: is composed by the background traffic generated by the user computer when the user is idle. This traffic has been captured with every application closed and with some opened pages like google docs, YouTube and several web pages, but always without user interaction.
The capture is performed in a network probe, attached to the router that forwards the user network traffic, using a SPAN port. The traffic is stored in pcap format with all the packet payload. In the csv file, every non TCP/UDP packet is filtered out, as well as every packet with no payload. The fields in the csv files are the following (one line per packet): Timestamp, protocol, payload size, IP address source and destination, UDP/TCP port source and destination. The fields are also included as a header in every csv file.
The amount of data is stated as follows:
Bulk : 19 traces, 3599 s of total duration, 8704 MBytes of pcap files Video : 23 traces, 4496 s, 1405 MBytes Web : 23 traces, 4203 s, 148 MBytes Interactive : 42 traces, 8934 s, 30.5 MBytes Idle : 52 traces, 6341 s, 0.69 MBytes
The code of our machine learning approach is also included. There is a README.txt file with the documentation of how to use the code.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global mobile data traffic market size was estimated at approximately USD 68 billion in 2023 and is projected to surge to about USD 320 billion by 2032, exhibiting a remarkable compound annual growth rate (CAGR) of 18.5% over the forecast period. This growth is driven by the increasing penetration of smartphones, advancements in network technologies, and the rising consumption of data-intensive applications and services.
One of the primary growth factors for the mobile data traffic market is the rapid expansion of the smartphone user base globally. As smartphones become more affordable and accessible, especially in emerging markets, the number of mobile internet users is skyrocketing. This trend is further amplified by the increasing availability of high-speed mobile networks, which make data-heavy applications such as video streaming and online gaming more feasible and attractive to users. The proliferation of affordable data plans is also encouraging users to consume more mobile data, thereby bolstering market growth.
Another significant driver of growth is the continuous evolution of network technologies. The transition from 3G to 4G, and now to 5G, has significantly enhanced data transmission speeds and network capabilities. 5G technology, in particular, promises ultra-low latency, higher capacity, and faster download and upload speeds, which are expected to revolutionize various sectors such as healthcare, automotive, and smart cities. The deployment and adoption of 5G networks are anticipated to boost mobile data traffic volumes exponentially, as it facilitates the seamless use of high-bandwidth applications, including augmented reality (AR), virtual reality (VR), and Internet of Things (IoT) devices.
The increase in video content consumption is also a major factor driving the market. Video traffic accounts for a substantial portion of mobile data usage, driven by platforms like YouTube, Netflix, and social media sites that prioritize video content. The trend of live streaming and video-on-demand services is creating a massive surge in data traffic, with users increasingly accessing high-definition (HD) and even 4K content. Moreover, the COVID-19 pandemic has accelerated the adoption of digital entertainment and online education, further increasing the demand for mobile data.
Regionally, the growth of mobile data traffic is witnessing variations with Asia Pacific leading the charge. The region's high population density, coupled with increasing urbanization and smartphone penetration, makes it a significant contributor to global data traffic. Countries like China and India are at the forefront, driven by government initiatives to promote digitalization and the rollout of advanced mobile networks. North America and Europe are also substantial markets due to their well-established network infrastructure and early adoption of new technologies. However, the growth rates in these regions are relatively moderate compared to the exponential growth seen in Asia Pacific and Latin America.
The mobile data traffic market can be segmented by traffic type into video, audio, data, and others. Video traffic is the most dominant segment, accounting for the largest share of mobile data usage worldwide. The proliferation of video streaming services, alongside user-generated video content on social media platforms, significantly contributes to this dominance. As more users switch to high-definition and 4K streaming, the demand for data-intensive video content continues to rise. Additionally, the growing popularity of live streaming and video calls, particularly in the context of remote work and online education, further propels this segment's growth.
Audio traffic also plays a significant role in the mobile data traffic market. The increasing usage of music streaming services such as Spotify, Apple Music, and various podcast platforms are driving the growth of this segment. The trend of consuming audio content on the go, facilitated by improved network speeds and unlimited data plans, is contributing to a steady rise in mobile data traffic from audio services. Furthermore, the adoption of smart speakers and voice assistant technologies is expected to continue bolstering this segment.
Data traffic, encompassing all forms of non-visual and non-audio data, is another crucial segment. This includes browsing, app usage, emails, and other types of data transmission over mobile networks. With the increasing reliance on mobile applications for a wide array of activities—ra
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global network traffic analysis solutions market size was estimated at USD 3.5 billion in 2023 and is projected to reach USD 9.8 billion by 2032, reflecting a compound annual growth rate (CAGR) of 12.1%. This substantial growth is largely driven by the increasing demand for robust cybersecurity measures across various sectors. With an ever-growing volume of network traffic due to the proliferation of connected devices and the adoption of digital transformation initiatives, organizations are compelled to deploy sophisticated traffic analysis tools to effectively monitor, manage, and secure their networks. The expansion of cloud services, coupled with the rise in cyber threats, further accentuates the need for advanced traffic analysis capabilities.
The surge in cyber threats, including sophisticated hacking techniques and ransomware attacks, has become a pivotal growth factor for the network traffic analysis solutions market. As organizations strive to protect sensitive data and ensure the integrity of their networks, there is a heightened demand for solutions that can provide real-time visibility and control over network traffic. This growing emphasis on cybersecurity is not limited to large enterprises but is increasingly becoming a priority for small and medium enterprises (SMEs) as well. Consequently, the increasing cyber threat landscape is stimulating the adoption of network traffic analysis solutions across different organizational sizes, driving market growth.
Moreover, the rise of Internet of Things (IoT) devices is significantly contributing to the increased need for network traffic analysis. IoT devices generate vast amounts of data that need to be managed effectively to prevent network congestion and potential security breaches. By leveraging traffic analysis solutions, organizations can optimize IoT device performance and ensure seamless data flow while maintaining robust security protocols. As the IoT ecosystem continues to expand, it is expected to further fuel the demand for network traffic analysis solutions, facilitating better management and security of network resources.
In addition to cybersecurity concerns and IoT proliferation, regulatory compliance is another critical growth driver for the network traffic analysis solutions market. Organizations across various industries, such as BFSI, healthcare, and government sectors, are under increasing pressure to comply with stringent data protection regulations. Network traffic analysis solutions help these organizations monitor compliance effectively by providing detailed insights into network activity and data flows. As regulations continue to evolve and become more complex, the role of network traffic analysis solutions in ensuring compliance and mitigating risks is expected to become increasingly important, further bolstering market growth.
Network Telemetry Solutions are becoming increasingly essential in the realm of network traffic analysis. These solutions provide real-time data collection and analysis, enabling organizations to gain deeper insights into their network operations. By leveraging network telemetry, businesses can proactively identify and address potential issues before they escalate into significant problems. This capability is particularly valuable in today's fast-paced digital environment, where network performance and security are critical to maintaining operational efficiency. As the demand for more granular visibility into network activities grows, network telemetry solutions are poised to play a pivotal role in enhancing the capabilities of traffic analysis tools, offering a more comprehensive approach to network management and security.
From a regional perspective, North America is anticipated to maintain a dominant position in the network traffic analysis solutions market. This can be attributed to the presence of major technology companies, a high adoption rate of advanced technologies, and stringent cybersecurity regulations. The region's established digital infrastructure and focus on innovation also contribute to market growth. Meanwhile, the Asia Pacific region is projected to witness the highest growth rate due to rapid digitalization, increasing internet penetration, and growing investments in IT infrastructure. As businesses in this region continue to adopt digital technologies and face rising cyber threats, the demand for network traffic analysis solutions is expected to surge significantly.
According to a report published by DataReportal, as of December 2024, mobile phones had the highest share of web traffic at ***** percent in Thailand. By comparison, the share of web traffic on laptops and desktop computers was around ** percent.
Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.
Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.
Use Case: Analyze Year Over Year Growth Rate by Region
Problem A public investor wants to understand how a company’s year-over-year growth differs by region.
Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends
Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume
Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels
Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.
Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The people from Czech are publishing a dataset for the HTTPS traffic classification.
Since the data were captured mainly in the real backbone network, they omitted IP addresses and ports. The datasets consist of calculated from bidirectional flows exported with flow probe Ipifixprobe. This exporter can export a sequence of packet lengths and times and a sequence of packet bursts and time. For more information, please visit ipfixprobe repository (Ipifixprobe).
During research, they divided HTTPS into five categories: L -- Live Video Streaming, P -- Video Player, M -- Music Player, U -- File Upload, D -- File Download, W -- Website, and other traffic.
They have chosen the service representatives known for particular traffic types based on the Alexa Top 1M list and Moz's list of the most popular 500 websites for each category. They also used several popular websites that primarily focus on the audience in Czech. The identified traffic classes and their representatives are provided below:
Live Video Stream Twitch, Czech TV, YouTube Live Video Player DailyMotion, Stream.cz, Vimeo, YouTube Music Player AppleMusic, Spotify, SoundCloud File Upload/Download FileSender, OwnCloud, OneDrive, Google Drive Website and Other Traffic Websites from Alexa Top 1M list
Unlock the Potential of Your Web Traffic with Advanced Data Resolution
In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.
Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.
Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.
Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.
Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.
Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.
Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.
Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.
How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:
Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.
Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.
Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.
Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.
Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.
Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...
Most Russian internet users employed their laptops or desktop devices to surf the internet in December 2024. Mobile phones accounted over 35 percent of the traffic, whereas tablet computers constituted approximately 1.4 percent of the traffic over the given time frame.
In the first quarter of 2024, mobile devices (mobile phones and tablets) running on Android OS accounted for 76.36 percent of the mobile traffic generated by mobile devices in Mexico, making the operating system the most popular in the North American country. iOS ranked second with a 23.38 percent share.
As of September 2024, more than 49 percent of internet traffic in France came through mobile phones. Desktop computers and laptops' share of internet traffic was around 48 percent. Other devices, such as tablets, accounted for about two percent of overall web traffic in France.
In January 2025 mobile devices excluding tablets accounted for over ** percent of web page views worldwide. Meanwhile, over ** percent of webpage views in Africa were generated via mobile. In contrast, just over half of web traffic in North America still took place via desktop connections with mobile only accounting for **** percent of total web traffic. While regional infrastructure remains an important factor in broadband vs. mobile coverage, most of the world has had their eyes on the recent 5G rollout across the globe, spearheaded by tech-leaders China and the United States. The number of mobile 5G subscriptions worldwide is forecast to reach more than ***** billion by 2028. Social media: room for growth in Africa and southern Asia Overall, more than ** percent of the world’s mobile internet subscribers are also active on social media. A fast-growing market, with newcomers such as TikTok taking the world by storm, marketers have been cashing in on social media’s reach. Overall, social media penetration is highest in Europe and America while in Africa and southern Asia, there is still room for growth. As of 2021, Facebook and Google-owned YouTube are the most popular social media platforms worldwide. Facebook and Instagram are most effective With nearly ***** billion users, it is no wonder that Facebook remains the social media avenue of choice for the majority of marketers across the world. Instagram, meanwhile, was the second most popular outlet. Both platforms are low-cost and support short-form content, known for its universal consumer appeal and answering to the most important benefits of using these kind of platforms for business and advertising purposes.