100+ datasets found
  1. Global population by continent 2024

    • statista.com
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population by continent 2024 [Dataset]. https://www.statista.com/statistics/262881/global-population-by-continent/
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2024
    Area covered
    World
    Description

    There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.

  2. Urbanization Dataset

    • kaggle.com
    zip
    Updated Aug 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benito Itele Wuver (2024). Urbanization Dataset [Dataset]. https://www.kaggle.com/datasets/benitoitelewuver/urbanization-dataset
    Explore at:
    zip(64932 bytes)Available download formats
    Dataset updated
    Aug 5, 2024
    Authors
    Benito Itele Wuver
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset appears to provide information on the percentage of the total population living in urban agglomerations of more than 1 million people for various countries, spanning multiple years. The columns are: Entity: The name of the country. Code: The country code (likely ISO 3166-1 alpha-3). Year: The year of the data record. Population in urban agglomerations of more than 1 million (% of total population): The percentage of the total population living in urban areas with more than 1 million inhabitants.

  3. C

    Number of People living in an Area by County

    • ckan.sabasi.io
    csv, ods, xlsx
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census.ke (2025). Number of People living in an Area by County [Dataset]. https://ckan.sabasi.io/dataset/table-2-4-distribution-of-population-land-area-and-population-density-by-county
    Explore at:
    xlsx, ods, csvAvailable download formats
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    Census.ke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Number of People living in an Area by County

  4. Number of centenarians worldwide 2000-2100

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of centenarians worldwide 2000-2100 [Dataset]. https://www.statista.com/statistics/996597/number-centenarians-worldwide/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    The number of people aged 100 years or more (centenarians) worldwide is expected to increase significantly over the coming decades. While there were only ******* centenarians in 2000, this number is predicted to increase to over **** million by 2100. As people on the planet live longer, global life expectancy increases.

  5. n

    Human Life-Table Database

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Oct 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Human Life-Table Database [Dataset]. http://identifiers.org/RRID:SCR_006248
    Explore at:
    Dataset updated
    Oct 11, 2024
    Description

    A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.

  6. B

    Singles Now Make Up More Than Half the U.S. Adult Population. Here's Where...

    • borealisdata.ca
    • dataone.org
    Updated Oct 1, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard Florida (2014). Singles Now Make Up More Than Half the U.S. Adult Population. Here's Where They All Live [Dataset]. http://doi.org/10.5683/SP3/ODOWNT
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 1, 2014
    Dataset provided by
    Borealis
    Authors
    Richard Florida
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/ODOWNThttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/ODOWNT

    Description

    The United States is now a nation of singles. Single people make up just over half of all American adults for the first time since statistics have been collected, according to a study reported by Bloomberg last week.

  7. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  8. Population Health (BRFSS: HRQOL)

    • kaggle.com
    zip
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Population Health (BRFSS: HRQOL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlock-population-health-needs-with-brfss-hrqol
    Explore at:
    zip(2247473 bytes)Available download formats
    Dataset updated
    Dec 14, 2022
    Authors
    The Devastator
    Description

    Population Health (BRFSS: HRQOL)

    Examining Trends, Disparities and Determinants of Health in the US Population

    By Health [source]

    About this dataset

    The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.

    The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.

    Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.

    Research Ideas

    • Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
    • Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
    • Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...

  9. g

    Health-related quality of life for people with three or more long-term...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health-related quality of life for people with three or more long-term conditions (NHSOF 2.7) | gimi9.com [Dataset]. https://gimi9.com/dataset/uk_health-related-quality-of-life-for-people-with-three-or-more-long-term-conditions-nhsof-2-7
    Explore at:
    Description

    This indicator measures the health-related quality of life for people who identify themselves as having three or more long-term conditions. Purpose This indicator measures how successfully the NHS is supporting people with multiple long-term conditions to live as normal a life as possible. This indicator helps people understand whether health-related quality of life is improving over time for the population with multiple long-term conditions. Current version updated: Sep-17 Next version due: Aug-18

  10. People living in democracies or autocracies worldwide 1900-2024

    • statista.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). People living in democracies or autocracies worldwide 1900-2024 [Dataset]. https://www.statista.com/statistics/1379579/people-world-living-democracy-autocracy/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Worldwide, around 5.8 billion people were living in countries classified as autocracies in 2024. Parts of this is down to the fact that the world's two most populous countries, China and India, who both count around 1.4 billion inhabitants, are classified as a closed autocracy and electoral autocracy, respectively. Similarly, the large increase in people living in autocracies in 2017 is because India was downgraded from an electoral democracy to an electoral autocracy that year.

  11. Number of people living in Saint-Étienne, France, by gender 2017

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of people living in Saint-Étienne, France, by gender 2017 [Dataset]. https://www.statista.com/statistics/542155/number-of-inhabitants-by-gender-saint-etienne-france/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017
    Area covered
    France
    Description

    This graph shows the number of inhabitants in the city of Saint-Étienne in France in 2017, by gender. That year, more than ****** males were living in Saint-Étienne.

  12. w

    5th Census of Population - IPUMS Subset - El Salvador

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    General Directorate of Statistics and Censuses (2025). 5th Census of Population - IPUMS Subset - El Salvador [Dataset]. https://microdata.worldbank.org/index.php/catalog/1071
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    General Directorate of Statistics and Censuses
    IPUMS
    Time period covered
    1992
    Area covered
    El Salvador
    Description

    Analysis unit

    Persons, households, and dwellings

    UNITS IDENTIFIED: - Dwellings: yes - Vacant Units: Yes - Households: yes - Individuals: yes - Group quarters: yes

    UNIT DESCRIPTIONS: - Dwellings: All places defined by walls and roofs where one or more people live regularly, that is where they sleep, cook and protect themselves from the elements. Also people can enter and leave the mentioned without passing through another house, having direct access from the street, passage, path or passing through common areas such as patios, hallways, corridors or stairs. - Households: Group of people who live as a family - Group quarters: This is a place or building where a group of people without family ties resides and share the space for reasons of lodging, health, education, military, religion, old age, orphanhood, etc. This includes hotels, boarding houses, guest houses, hospitals, homes for the elderly, internment schools, hospices, jails, etc.

    Universe

    All people who live in the country and all households nationally. Homeless

    Kind of data

    Population and Housing Census [hh/popcen]

    Sampling procedure

    MICRODATA SOURCE: General Directorate of Statistics and Censuses

    SAMPLE SIZE (person records): 510760.

    SAMPLE DESIGN: Stratified systematic sample. Homeless

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Census questionnaire containing questions on demographic and socio-economic characteristics of the population, dwelling unit characteristics, emigration, and mortality.

  13. Number of U.S. citizens living overseas, by region 2014

    • statista.com
    Updated Feb 15, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Number of U.S. citizens living overseas, by region 2014 [Dataset]. https://www.statista.com/statistics/793454/number-of-americans-living-overseas-by-region/
    Explore at:
    Dataset updated
    Feb 15, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2014
    Area covered
    Worldwide, United States
    Description

    This statistic shows the number of United States citizens living overseas in 2014, by region. In that year, there were about **** million U.S. citizens living in Europe.

  14. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSDT5Y2023.B17017?q=B17017&g=860XX00US77032
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..One person in each household is designated as the householder. In most cases, this is the person or one of the people in whose name the home is owned, being bought, or rented and who is listed on line one of the survey questionnaire. If there is no such person in the household, any adult household member 15 years old and over could be designated as the householder.Households are classified by type according to the presence of relatives. Two types of householders are distinguished: a family householder and a nonfamily householder. A family householder is a householder living with one or more individuals related to him or her by birth, marriage, or adoption. The householder and all people in the household related to him or her are family members. A nonfamily householder is a householder living alone or with non-relatives only.To determine poverty status of a householder in family households, one compares the total income in the past 12 months of all family members with the poverty threshold appropriate for that family size and composition. If the total family income is less than the threshold, then the householder together with every member of his or her family are considered as having income below the poverty level.In determining poverty status of a nonfamily householder, only the householder's own personal income is compared with the appropriate threshold for a single person. The poverty status of a nonfamily householder does not affect the poverty status of the other unrelated individuals living in the household and the incomes of people living in the household who are not related to the householder are not considered when determining the poverty status of a householder. The income of each unrelated individual is compared to the appropriate threshold for a single person..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of erro...

  15. B

    Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: %...

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/belgium/social-poverty-and-inequality/be-proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    Belgium
    Description

    Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 8.100 % in 2021. This records an increase from the previous number of 7.900 % for 2020. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 9.100 % from Dec 1985 (Median) to 2021, with 25 observations. The data reached an all-time high of 10.500 % in 2015 and a record low of 6.000 % in 1985. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belgium – Table BE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  16. F

    Population Estimate, Total, Not Hispanic or Latino, Two or More Races, Two...

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population Estimate, Total, Not Hispanic or Latino, Two or More Races, Two Races Including Some Other Race (5-year estimate) in Live Oak County, TX [Dataset]. https://fred.stlouisfed.org/series/B03002010E048297
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Live Oak County, Texas
    Description

    Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Two or More Races, Two Races Including Some Other Race (5-year estimate) in Live Oak County, TX (B03002010E048297) from 2009 to 2023 about Live Oak County, TX; non-hispanic; estimate; TX; 5-year; persons; population; and USA.

  17. N

    Live Oak, CA Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Live Oak, CA Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f033a77f-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Live Oak, California
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Live Oak, CA population pyramid, which represents the Live Oak population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Live Oak, CA, is 38.1.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Live Oak, CA, is 22.7.
    • Total dependency ratio for Live Oak, CA is 60.7.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Live Oak, CA is 4.4.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Live Oak population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Live Oak for the selected age group is shown in the following column.
    • Population (Female): The female population in the Live Oak for the selected age group is shown in the following column.
    • Total Population: The total population of the Live Oak for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Live Oak Population by Age. You can refer the same here

  18. P

    Population living in low elevation coastal zones (0-10m and 0-20m above sea...

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Population living in low elevation coastal zones (0-10m and 0-20m above sea level) [Dataset]. https://pacificdata.org/data/dataset/population-living-in-low-elevation-coastal-zones-0-10m-and-0-20m-above-sea-level-df-pop-lecz
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 2010 - Dec 31, 2024
    Description

    Proportion of population in Pacific Island Countries and Territories (PICTs) living in Low Elevation Coastal Zones (LECZ) of 0-10 and 0-20 meters above sea level. LECZ were delineated using the bathub method overlaid on the Advanced Land Observing Satellite (ALOS) Global Digital Surface Model (AW3D30). Populations within the LECZs were estimated using the Pacific Community (SPC) Statistics for Development Division’s 100m2 population grids.

    Find more Pacific data on PDH.stat.

  19. Covid-19 Highest City Population Density

    • kaggle.com
    zip
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
    Explore at:
    zip(4685 bytes)Available download formats
    Dataset updated
    Mar 25, 2020
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  20. C

    Pittsburgh American Community Survey Data 2015 - Household Types

    • data.wprdc.org
    • catalog.data.gov
    • +1more
    csv
    Updated May 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2023). Pittsburgh American Community Survey Data 2015 - Household Types [Dataset]. https://data.wprdc.org/dataset/pittsburgh-american-community-survey-data-household-types
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 21, 2023
    Dataset authored and provided by
    City of Pittsburgh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pittsburgh
    Description

    The data on relationship to householder were derived from answers to Question 2 in the 2015 American Community Survey (ACS), which was asked of all people in housing units. The question on relationship is essential for classifying the population information on families and other groups. Information about changes in the composition of the American family, from the number of people living alone to the number of children living with only one parent, is essential for planning and carrying out a number of federal programs.

    The responses to this question were used to determine the relationships of all persons to the householder, as well as household type (married couple family, nonfamily, etc.). From responses to this question, we were able to determine numbers of related children, own children, unmarried partner households, and multi-generational households. We calculated average household and family size. When relationship was not reported, it was imputed using the age difference between the householder and the person, sex, and marital status.

    Household – A household includes all the people who occupy a housing unit. (People not living in households are classified as living in group quarters.) A housing unit is a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied (or if vacant, is intended for occupancy) as separate living quarters. Separate living quarters are those in which the occupants live separately from any other people in the building and which have direct access from the outside of the building or through a common hall. The occupants may be a single family, one person living alone, two or more families living together, or any other group of related or unrelated people who share living arrangements.

    Average Household Size – A measure obtained by dividing the number of people in households by the number of households. In cases where people in households are cross-classified by race or Hispanic origin, people in the household are classified by the race or Hispanic origin of the householder rather than the race or Hispanic origin of each individual.

    Average household size is rounded to the nearest hundredth.

    Comparability – The relationship categories for the most part can be compared to previous ACS years and to similar data collected in the decennial census, CPS, and SIPP. With the change in 2008 from “In-law” to the two categories of “Parent-in-law” and “Son-in-law or daughter-in-law,” caution should be exercised when comparing data on in-laws from previous years. “In-law” encompassed any type of in-law such as sister-in-law. Combining “Parent-in-law” and “son-in-law or daughter-in-law” does not represent all “in-laws” in 2008.

    The same can be said of comparing the three categories of “biological” “step,” and “adopted” child in 2008 to “Child” in previous years. Before 2008, respondents may have considered anyone under 18 as “child” and chosen that category. The ACS includes “foster child” as a category. However, the 2010 Census did not contain this category, and “foster children” were included in the “Other nonrelative” category. Therefore, comparison of “foster child” cannot be made to the 2010 Census. Beginning in 2013, the “spouse” category includes same-sex spouses.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Global population by continent 2024 [Dataset]. https://www.statista.com/statistics/262881/global-population-by-continent/
Organization logo

Global population by continent 2024

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 1, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jul 1, 2024
Area covered
World
Description

There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.

Search
Clear search
Close search
Google apps
Main menu