Land boundaries for taxing purposes in Morgan County Illinois. Updated on 5/1/2023
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThe B Law Coal Permit Maps county coverage sets were developed using the original mine maps for coal mining and reclamation permits issued under Ohio law from 1973 through 1976. Approximately 1285 B-Permits were issued during this time period, however, only approximately 414 records could be located and captured at this time. The Division of Mineral Resources Management will continue to search for missing B permit archival records as resources allow; additional B permit data may be added to this existing coverage in the future.
Ohio started issuing coal mining licenses in the 1940s. The earliest license and permit requirements were minimal and sometimes did not include submittal of a map or other delineation of the mined area. Significant changes to legal requirements are reflected by the alphabetical designation of each subsequent law revision, i.e., earlier A-law permits (circa 1966) through contemporary D-law permits. The ODNR-Division of Mineral Resources Management (DMRM) has attempted to create as complete a database as possible from available archive records, however, research has identified missing permit files. Thus, this GIS data is known to be incomplete due to the loss of archival records.
The B law permit maps were scanned at a density of 200 dots per inch (dpi). The scanned image was then heads-up digitized using Microstation computer aided design software (CAD) to create design files grouped by county location. Data captured within the design file includes permit boundary, affected boundary, test hole locations, and associated attributes. The design file was then "placed-to-ground" using ODNR Division of Geological Survey's "ODNR Land Subdivision Background Design Files" NAD83 State Plane coverages and DOQQ aerial images obtained through the Ohio Geographically Referenced Information Program (OGRIP)/Ohio Department of Administrative Services. The design file was then converted to ARC/INFO coverage and projected to State Plane Ohio Coordinates, NAD83:
Projected coordinate system name: NAD_1983_StatePlane_Ohio_South_FIPS_3402_Feet
Geographic coordinate system name: GCS_North_American_1983
A complete county coverage set consists of three data files for the permit area, affected area, and test hole locations. For example, the coverage for Belmont County includes:
belmont_b_permitted (Belmont County, B-permit area polygons) belmont_b _affected (Belmont County, B-permit affected area polygons) belmont_testholes_b (Belmont County, Test Hole points)
In addition to the ArcView shape files in the county data sets, the scanned TIF images for source documents are available at DMRM. The scanned mine map depicts information about the operations conducted, environmental resources, and extracted coal resources. If more detailed information is desired, the available archival record for each captured permit can be accessed at either the State Archives at the Ohio Historical Society or the ODNR-DMRM central office.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesDivision of Mineral Resources ManagementAbandoned Mine Land Program2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThe A Law Coal Permit Maps county coverage sets were developed using the original mine maps for coal mining and reclamation permits issued under Ohio law from approximately 1966 through 1973. Approximately 1111 A-Permits were issued during this time period, however, only 350 records could be located and captured at this time. The Division of Mineral Resources Management will continue to search for missing A permit archival records as resources allow; additional A permit data may be added to this existing coverage in the future.
Ohio started issuing coal mining licenses in the 1940s. The earliest license and permit requirements were minimal and sometimes did not include submittal of a map or other delineation of the mined area. Significant changes to legal requirements are reflected by the alphabetical designation of each subsequent law revision, i.e., earlier A-law permits (circa 1966) through contemporary D-law permits. The ODNR-Division of Mineral Resources Management (DMRM) has attempted to create as complete a database as possible from available archive records, however, research has identified missing permit files. Thus, this GIS data is known to be incomplete due to the loss of archival records.
The A law permit maps were scanned at a density of 200 dots per inch (dpi). The scanned image was then heads-up digitized using Microstation computer aided design software (CAD) to create design files grouped by county location. Data captured within the design file includes permit boundary and affected boundary and associated attributes. When available, test hole locations and associated attributes were also captured. The design file was then "placed-to-ground" using ODNR Division of Geological Survey's "ODNR Land Subdivision Background Design Files" NAD83 State Plane coverages and DOQQ aerial images obtained through the Ohio Geographically Referenced Information Program (OGRIP)/Ohio Department of Administrative Services. The design file was then converted to ARC/INFO coverage and projected to State Plane Ohio Coordinates, NAD83:
Projected coordinate system name: NAD_1983_StatePlane_Ohio_South_FIPS_3402_Feet or NAD_1983_StatePlane_Ohio_North_FIPS_3401_Feet
Geographic coordinate system name: GCS_North_American_1983
A complete county coverage set consists of three data files for the permit area, affected area, and test hole locations. For example, the coverage for Harrison County includes:
harrison_a_permitted (Harrison County, A-permit area polygons) harrison_a _affected (Harrison County, A-permit affected area polygons) harrison_testholes_a (Harrison County, Test Hole points)
In addition to the ArcView shape files in the county data sets, the scanned TIF images for source documents are available at DMRM. The scanned mine map depicts information about the operations conducted, environmental resources, and extracted coal resources. If more detailed information is desired, the available archival record for each captured permit can be accessed at either the State Archives at the Ohio Historical Society or the ODNR-DMRM central office.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesDivision of Mineral Resources ManagementAbandoned Mine Land Program2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov
An official index map of tax maps by municipality for the County of Berks Assessment Department.
Land boundaries for taxing purposes in Morgan County Illinois. Updated on 6/25/2025
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This U.S. Geological Survey (USGS) data release for the geologic map of the Arlington quadrangle, Carbon County, Wyoming, is a Geologic Map Schema (GeMS, 2020)-compliant version of the printed geologic map published in USGS Geologic Map Quadrangle GQ-643 (Hyden and others, 1967). The database represents the geology for the 35,776-acre map plate at a publication scale of 1:24,000. References: Hyden, H.J., King, J.S., and Houston, R.S., 1967, Geologic map of the Arlington quadrangle, Carbon County, Wyoming: U.S. Geological Survey, Geologic Quadrangle Map GQ-643, scale 1:24,000; https://doi.org/10.3133/gq643. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
The development and generation of the datasets that are published through this data release, were based on the results and findings of the report: Kohn, M.S. and Patton, T.T., 2018, Flood-Inundation Maps for the South Platte River at Fort Morgan, Colorado, 2018: U.S. Geological Survey Scientific Investigations Report 2018-5114, 14 p., https://doi.org/10.3133/sir20185114. The geospatial dataset contain final versions of the raster and vector geospatial data and related metadata. The geospatial data include inundation extents, corresponding inundation depths, and the study area boundaries. Digital flood-inundation maps for a 4.5-mile reach of the South Platte River at Fort Morgan, Colorado from Morgan County Road 16 to Morgan County 20.5, were created by the U.S. Geological Survey (USGS) in cooperation with the Colorado Water Conservation Board. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site (https://water.usgs.gov/osw/flood_inundation/), depict estimates of the areal extent and depth of flooding corresponding to select water levels (stages) at USGS streamgage 06759500, South Platte River at Fort Morgan. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information are available through the National Water Information System web interface or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (http:/water.weather.gov/ahps/). Water-profiles were computed for the stream reach by means of a one-dimensional, step-backwater model. The September 15, 2013 and May 20, 2017 floods were used to calibrate the model, and the June 15, 2015 and May 29, 2017 floods were used to independently validate the model. Nine pressure transducers were deployed to record the stage at nine different locations along the reach and to document the floods of May 20 and 29, 2017 at the South Platte River at Fort Morgan streamgage. The calibrated hydraulic model was then used to determine 16 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from 12 ft (3.66 m) or below bankfull to 27 ft (8.23 m), which is 1 ft (0.3 m) greater than the highest recorded water level (25.73 ft [7.84 m] on September 15, 2013) at the South Platte River at Fort Morgan streamgage during its period of record and the 2013 flood exceeds the major flood stage of 21.5 ft (6.55 m) by more than 4 ft (1.2 m) as defined by the National Weather Service. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging) to delineate the area flooded at stages ranging from 12-ft to 27-ft. The availability of these inundation maps, along with internet information regarding the current stage from the USGS streamgage 06759500, South Platte River at Fort Morgan, Colorado, and forecast river stages from the NWS Advanced Hydrologic Prediction Service, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the urban growth simulation results of future land use in 2040 of the Wasatch Range Metropolitan Area (WRMA) .In this study, we defined the WRMA as a broad, ten-county region that surrounds the Wasatch Mountain Range east of the Great Salt Lake and Salt Lake City in Utah. This region encompasses four Wasatch Front counties west of the mountain range (Weber County, Davis County, Salt Lake County, and Utah County), three Wasatch Back counties east of the mountain range (Morgan County, Summit County, and Wasatch County), and three counties neighboring the Wasatch Front (Cache County, Box Elder County, and Tooele County).
SLEUTH-3r urban growth simulation model is used to generate this dataset. Detailed SLEUTH model protocol can be found at: http://www.ncgia.ucsb.edu/projects/gig/index.html. The data used to run the SLEUTH-3r model include National Land Cover Database 2001, 2006, and 2011, US Census TIGER/Line shapefile for 2000 and 2011, United States Geological Survey 7.5 min elevation model, and Utah Landownership map from Utah Automated Geographic Reference Center.
Three alternative scenarios were developed to explore how conserving Utah’s agriculturale land and maintaining healthy watersheds would affect the patterns and trajectories of urban development: 1) The first scenario is a “Business as Usual” scenario. In this scenario, federal, state, and local parks, conservation easement areas, and surface water bodies, were completely excluded (value = 100) from development, and all the remaining lands are were naively assumed as developable (value = 0). This is the same excluded layer that was also used during model calibration. Under this scenario, we hypothesized that future urban grow will occur following the historical growth behaviors and trajectories and no changes in land designation or policies to restrict future growth will be implemented. 2) The second scenario is an “Agricultural Conservation” scenario. Within the developable areas that we identified earlier, we then identified places that are classified by the United States Department of Agriculture (USDA) as prime farmland, unique farmland, farmland of statewide importance, farmland of local importance, prime farmland if irrigated, and prime farmland if irrigated and drained. Each of these classes were assigned with an exclusion value from urban development of 100, 80, 70, 60, 50, and 40 respectively. These exclusion values reflect the relative importance of each farmland classification and preservation priorities. By doing so, the model discourages but does not totally eliminate growth from occurring on agricultural lands, which reflects a general policy position to conserve agricultural landscapes while respecting landowners’ rights to sell private property. 3) A “Healthy Watershed” scenario aims to direct urban growth away from areas prone to flooding and areas critical for maintaining healthy watersheds. First, we made a 200-meter buffer around existing surface water bodies and wetlands and assigned these areas an exclusion value of 100 to keep growth from occurring there. In addition, we assigned areas that have frequent, occasional, rare and no-recorded flooding events with exclusion values of 100, 70, 40 and 0 accordingly. We also incorporated the critical watershed restoration areas identified by the Watershed Restoration Initiative of Utah Division of Wildlife Resources (https://wri.utah.gov/wri/) into this scenario. These watershed restoration areas are priority places for improving water quality and yield, reducing catastrophic wildfires, restoring the structure and function of watersheds following wildfire, and increasing habitat for wildlife populations and forage for sustainable agriculture. However, there are not yet legal provisions for protecting them from urbanization, so we assigned these areas a value of 70 to explore the potential urban expansion outcomes if growth were encouraged elsewhere.
Future land use projections of 2040 are in GIF format, which can be reprojected and georeferenced in ArcGIS or QGIS, or be read directly as a picture.
School District boundaries for in Morgan County Illinois, based on tax Codes Updated on 1/12/2022
Attachment regarding 1. A rezoning request by Morgan Property Group on Parcels 2719, 2720, 2721, 69884, 60612, 2508, from R-1 Residential to CD-CB Conditional District Community Business for a retail shopping center with specific uses prohibited. The total accumulative parcel totals is approximately 27.53 acres.
Voting Precincts for Morgan County Illinois. Updated on 3/30/2023
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset reflects the most current version of Utah county boundaries plus modifications made to correct known issues along the Davis-Weber and Duchesne-Uintah county boundaries. (20111108) and boundary agreement (certified 20120612) between Juab and Millard Counties. And an adjustment between Morgan and Summit Counties (4/3/2013). Minor adjustments were made to align with the Newest PLSS-GCDB layers from BLM (CadNSDIv2), any where from 10 to 50 feet all in non-populated areas (7/18/2014). Minor adjustment between Davis and Weber County (20201105)Data is current through Nov. 15, 2021; Population Figures from 2020 Census. Population Estimates are Null until we get a 2021 update.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Land boundaries for taxing purposes in Morgan County Illinois. Updated on 5/1/2023