In the period 2018 to 2022, a total of approximately 173 men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of 126 per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.
Breast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.
Cancer survival statistics are typically expressed as the proportion of patients alive at some point subsequent to the diagnosis of their cancer. Statistics compare the survival of patients diagnosed with cancer with the survival of people in the general population who are the same age, race, and sex and who have not been diagnosed with cancer.
Lung cancer was the cancer type with the highest rate of death among males worldwide in 2022. In that year there were around 25 deaths from trachea, bronchus and lung cancer among males per 100,000 population. The death rate for all cancers among males was 109 per 100,000 population. This statistic shows the rate of cancer deaths among males worldwide in 2022, by type of cancer.
Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.
This dataset contains data about lung cancer Mortality. This database is a comprehensive collection of patient information, specifically focused on individuals diagnosed with cancer. It is designed to facilitate the analysis of various factors that may influence cancer prognosis and treatment outcomes. The database includes a range of demographic, medical, and treatment-related variables, capturing essential details about each patient's condition and history.
Key components of the database include:
Demographic Information: Basic details about the patients such as age, gender, and country of residence. This helps in understanding the distribution of cancer cases across different populations and regions.
Medical History: Information about each patient’s medical background, including family history of cancer, smoking status, Body Mass Index (BMI), cholesterol levels, and the presence of other health conditions such as hypertension, asthma, cirrhosis, and other cancers. This section is crucial for identifying potential risk factors and comorbidities.
Cancer Diagnosis: Detailed data about the cancer diagnosis itself, including the date of diagnosis and the stage of cancer at the time of diagnosis. This helps in tracking the progression and severity of the disease.
Treatment Details: Information regarding the type of treatment each patient received, the end date of the treatment, and the outcome (whether the patient survived or not). This is essential for evaluating the effectiveness of different treatment approaches.
The structure of the database allows for in-depth analysis and research, making it possible to identify patterns, correlations, and potential causal relationships between various factors and cancer outcomes. It is a valuable resource for medical researchers, epidemiologists, and healthcare providers aiming to improve cancer treatment and patient care.
id: A unique identifier for each patient in the dataset. age: The age of the patient at the time of diagnosis. gender: The gender of the patient (e.g., male, female). country: The country or region where the patient resides. diagnosis_date: The date on which the patient was diagnosed with lung cancer. cancer_stage: The stage of lung cancer at the time of diagnosis (e.g., Stage I, Stage II, Stage III, Stage IV). family_history: Indicates whether there is a family history of cancer (e.g., yes, no). smoking_status: The smoking status of the patient (e.g., current smoker, former smoker, never smoked, passive smoker). bmi: The Body Mass Index of the patient at the time of diagnosis. cholesterol_level: The cholesterol level of the patient (value). hypertension: Indicates whether the patient has hypertension (high blood pressure) (e.g., yes, no). asthma: Indicates whether the patient has asthma (e.g., yes, no). cirrhosis: Indicates whether the patient has cirrhosis of the liver (e.g., yes, no). other_cancer: Indicates whether the patient has had any other type of cancer in addition to the primary diagnosis (e.g., yes, no). treatment_type: The type of treatment the patient received (e.g., surgery, chemotherapy, radiation, combined). end_treatment_date: The date on which the patient completed their cancer treatment or died. survived: Indicates whether the patient survived (e.g., yes, no).
This dataset contains artificially generated data with as close a representation of reality as possible. This data is free to use without any licence required.
Good luck Gakusei!
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data provides high-level data on historical registrations (or cases) and deaths, including information about the cancer types and breakdowns by gender variables.
In 2022, trachea, bronchus, and lung were the cancer sites with the highest mortality rate in the EU, with 54.2 deaths per 100,000 population. Other cancer sites with high mortality rate were prostate, breast, and colorectum, with 36.3, 34.1, and 32.4 deaths per 100,000 population, respectively. This statistic depicts the estimated mortality rate in the EU in 2022, by cancer site.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from all cancers, directly age-standardised rate, persons, under 75 years, 2004-08 (pooled) per 100,000 European Standard population by Local Authority by local deprivation quintile. Local deprivation quintiles are calculated by ranking small areas (Lower Level Super Output Areas (LSOAs)) within each Local Authority based on their Index of Multiple Deprivation 2007 (IMD 2007) deprivation score, and then grouping the LSOAs in each Local Authority into five groups (quintiles) with approximately equal numbers of LSOAs in each. The upper local deprivation quintile (Quintile 1) corresponds with the 20% most deprived small areas within that Local Authority. The mortality rates have been directly age-standardised using the European Standard Population in order to make allowances for differences in the age structure of populations. There are inequalities in health. For example, people living in more deprived areas tend to have shorter life expectancy, and higher prevalence and mortality rates of most cancers. Cancer accounts for nearly 30% of all deaths among men in England every year and nearly 25% of deaths among women every year1. Reducing inequalities in premature mortality from all cancers is a national priority, as set out in the Department of Health’s Vital Signs Operating Framework 2008/09-2010/112 and the PSA Delivery Agreement 183. However, existing indicators for premature cancer mortality do not take deprivation into account. This indicator has been produced in order to quantify inequalities in cancer mortality by deprivation. This indicator has been discontinued and so there will be no further updates. Legacy unique identifier: P01368
https://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.htmlhttps://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.html
The German Centre for Cancer Registry Data (ZfKD) provides the topical cancer statistics for Germany. In an interactive database query you will get information on incidence and mortality rates as well as for prevalence and survival rates for different types of cancer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCervical cancer incidence and mortality rates in the United States have substantially declined over recent decades, primarily driven by reductions in squamous cell carcinoma cases. However, the trend in recent years remains unclear. This study aimed to explore the trends in cervical cancer incidence and mortality, stratified by demographic and tumor characteristics from 1975 to 2018.MethodsThe age-adjusted incidence, incidence-based mortality, and relative survival of cervical cancer were calculated using the Surveillance, Epidemiology, and End Results (SEER)-9 database. Trend analyses with annual percent change (APC) and average annual percent change (AAPC) calculations were performed using Joinpoint Regression Software (Version 4.9.1.0, National Cancer Institute).ResultsDuring 1975–2018, 49,658 cervical cancer cases were diagnosed, with 17,099 recorded deaths occurring between 1995 and 2018. Squamous cell carcinoma was the most common histological type, with 34,169 cases and 11,859 deaths. Over the study period, the cervical cancer incidence rate decreased by an average of 1.9% (95% CI: −2.3% to −1.6%) per year, with the APCs decreased in recent years (−0.5% [95% CI: −1.1 to 0.1%] in 2006–2018). Squamous cell carcinoma incidence trends closely paralleled overall cervical cancer patterns, but the incidence of squamous cell carcinoma in the distant stage increased significantly (1.1% [95% CI: 0.4 to 1.8%] in 1990–2018). From 1995 to 2018, the overall cervical cancer mortality rate decreased by 1.0% (95% CI: −1.2% to −0.8%) per year. But for distant-stage squamous cell carcinoma, the mortality rate increased by 1.2% (95% CI: 0.3 to 2.1%) per year.ConclusionFor cervical cancer cases diagnosed in the United States from 1975 to 2018, the overall incidence and mortality rates decreased significantly. However, there was an increase in the incidence and mortality of advanced-stage squamous cell carcinoma. These epidemiological patterns offer critical insights for refining cervical cancer screening protocols and developing targeted interventions for advanced-stage cases.
The cancer type with the highest age-standardized mortality rate in Latin America and the Caribbean in 2022 was prostate cancer with 13.9 deaths per 100,000 population. Breast cancer ranked second, with a mortality rate of 13.2 people per 100,000 population. In that year, breast cancer was the cancer type with the highest prevalence in the region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overall-temporal-changes (ACd,r, per 100,000 people) from 2001 to 2016, in age-standardised fitted mortality rates for deprivation levels 1 and 10 and all regions in England for both genders; 95% credible intervals in brackets.
The U.S. states are divided into groups based on the rates at which women developed or died from breast cancer in 2013, which is the most recent year for which incidence data are available.
https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Breast Cancer Statistics: Breast cancer remains one of the most prevalent and concerning health challenges, mostly among women. It is the most common cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths among women in the United States. The impact of breast cancer is significant, with millions of new cases diagnosed each year and hundreds of thousands of deaths attributed to the disease.
This article will provide critical insights into the incidence, survival rates, mortality, and disparities across different demographics, including age, race, and ethnicity. Understanding the latest statistics on breast cancer is crucial for driving progress in reducing the incidence and mortality rates, improving survival outcomes, and ultimately, finding a cure.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In this dataset you'll find the deaths from cancer at hospitals in the respective 50 states in America.
This dataset comes from https://data.world/dartmouthatlas/cancer-patients-death.
All individuals diagnosed with cancer from 2000 to 2007 were identified in the Cancer Register of Southern Sweden, but only individuals who were also identified in the Population Register of Scania were included in this cohort. Age- and gender-matched controls were identified in the Population Register of Scania. The controls were reconciled with the cancer registry in southern Sweden so that they had no prior diagnosis of cancer and with the Population Register of Scania that they were alive at time of diagnosis to the matched case. Also spouses to cancer patients were used as controls.
For each individual, healthcare costs were monitored related to the date of diagnosis. Costs for outpatient care, inpatient care, number of days in hospital and medications were included. Costs were also calculated for the controls.
Other information available about the individuals in the cohort are age, sex, domicile, type of tumor and medication.
Purpose:
To study the health cost per individual in relation to mortality and comorbidity.
Dataset includes the study controls (individuals matched by age and sex ) Also spouses to cancer patients were included in the control group.
In the period 2018 to 2022, a total of approximately 173 men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of 126 per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.