The National Mortgage Database (NMDB®) is a nationally representative five percent sample of residential mortgages in the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Mortgage Database (NMDB®) is a nationally representative five percent sample of residential mortgages in the United States. Publication of aggregate data from NMDB is a step toward implementing the statutory requirements of section 1324(c) of the Federal Housing Enterprises Financial Safety and Soundness Act of 1992, as amended by the Housing and Economic Recovery Act of 2008. The statute requires FHFA to conduct a monthly mortgage market survey to collect data on the characteristics of individual mortgages, both Enterprise and non-Enterprise, and to make the data available to the public while protecting the privacy of the borrowers.Notes:1) All CSV file headers are now standardized as described in the Data Dictionary and Technical Notes and all CSV files are zipped.2) Alternate wide format CSV files are available. The wide format may be more easily opened by MS Excel.
Our Home Ownership Mortgage Database is rebuilt from every two months and contains information on over 50+ million US Homeowners. The data is collected from county recorder and assessor offices.
The file is processed via National Change of Address (NCOA) to ensure deliverability. Additionally, the data is passed against suppression files to eliminate consumers or telephone numbers as appropriate such as Decease File, State Attorney General (SAG) data, the Direct Marketing Association's (DMA) do-not-mail and do-not-call lists, and the national FTC do-not-call file.
Selections include mortgage loan and property attributes along with household, individual and neighborhood demographics.
Discover the power of McGRAW’s comprehensive data solutions, the industry's largest and most complete property and ownership database in the nation. Additionally, the mortgage industry's most sought-after analytics solutions for loan quality, risk management, compliance, and collateral valuation. These data sets are built to empower businesses with reliable, accurate, and actionable insights across the mortgage, real estate, and title sectors. With access to over 150 million records and 200 attributes, our expansive data repository enables you to streamline decision-making, optimize marketing, and enhance customer targeting across industries. Take a look at the comprehensive data sets below:
Mortgage Data Our mortgage data encompasses loan origination, borrower profiles, mortgage terms, and payment statuses, providing a complete view of borrowers and mortgage landscapes. We deliver details on active and historical mortgages, including lender information, loan types, interest rates, and mortgage maturity. This empowers financial institutions and analysts to predict market trends, assess creditworthiness, and personalize customer outreach with accuracy.
Property Data McGRAW’s property data includes detailed attributes on residential and commercial properties, spanning property characteristics, square footage, zoning information, construction dates, and much more. Our data empowers real estate professionals, property appraisers, and investors to make well-informed decisions based on current and historical property details.
Title Data Our title data service provides a clear view of ownership history and title status, ensuring comprehensive information on property chain-of-title, lien positions, encumbrances, and transaction history. This invaluable data assists title companies, legal professionals, and financial institutions in validating title claims, mitigating risks, and reducing time-to-close.
Ownership Data McGRAW ownership data supplies in-depth insights into individual and corporate property ownership, offering information on property owners, purchase prices, and ownership duration. This dataset is crucial for due diligence, investment planning, and market analysis, giving businesses the competitive edge to identify opportunities and assess ownership patterns in the marketplace.
Unmatched Data Quality & Coverage Our data covers the full spectrum of residential and commercial properties in the United States, with attributes verified for accuracy and updated regularly. From state-of-the-art technology to rigorous data validation practices, McGRAW’s data quality stands out, providing the confidence that businesses need to make strategic decisions.
Why Choose McGRAW Data?
Extensive Reach: Over 150 million records provide unparalleled depth and breadth of data coverage across all 50 states.
Diverse Attributes: With 200 attributes across mortgage, property, title, and ownership data, businesses can customize data views for specific needs.
Actionable Insights: Our data analytics tools and customizable reports translate raw data into valuable insights, helping you stay ahead in the competitive landscape.
Leverage McGRAW’s data solutions to unlock a holistic view of the mortgage, property, title, and ownership landscapes. For real estate professionals, lenders, and investors seeking data-driven growth, McGRAW provides the tools to elevate decision-making, enhance operational efficiency, and drive business success in today’s data-centric market.
Mortgage Assignment & Release Data refers to information related to the assignment and release of mortgage loans. It provides valuable insights into the transfer of mortgage ownership from one party to another and the subsequent release of the mortgage lien. This data can be essential for various industries, including banking, real estate, legal services, and mortgage lending, enabling them to make informed decisions and mitigate risks associated with mortgage transactions.
What is Assignment and Release Data?
Assignment Data – Assignment data pertains to the transfer of ownership rights of a mortgage loan from one entity to another. This transfer typically occurs when a lender sells or transfers a mortgage loan to another financial institution, such as a bank, credit union, or mortgage-backed security issuer. Assignment data includes information such as the parties involved, the effective date of the assignment, and any relevant terms or conditions.
Release Data – Release data involves the release or satisfaction of a mortgage lien on a property. When a mortgage loan is fully paid off or otherwise satisfied, the lender releases the mortgage lien, allowing the property owner to have clear title. Release data provides details about the release, including the date of release, the parties involved, and any legal documentation associated with the release.
Assignment & Release Property Details:
This file includes all active HUD Multifamily insured mortgages. The data is updated monthly.
The Owner Transfer and Mortgage data covers over 450 million properties, and includes over 50 years of sales history. The tables were generated in June 2024, and cover all U.S. states, the U.S. Virgin Islands, Guam, and Washington, D.C.
The Owner Transfer data provides historical information about property sales and ownership-related transactions, including full, nominal, and quitclaim transactions (involving a change in title/ownership). It contains comprehensive property and transaction information, such as property characteristics, current ownership, transaction history, title company, cash purchase/foreclosure/resale/short sale indicators, and buyer information.
The Mortgage data provides historical information at the mortgage level, including purchase, refinance, equity, as well as details associated with each transaction, such as lender, loan amount, loan date, interest rate, etc. Mortgage details include mortgage amount, type of loan (conventional, FHA, VHA), mortgage rate type, mortgage purpose (cash out first, consolidation, standalone subordinate), mortgage ARM features, and mortgage indicators such as fixed-rate, conforming loan, construction loan, and private party. The Mortgage data also includes subordinate mortgage types, rate details, and lender details (NMLS ID, Loan Company, Loan Officers).
The CoreLogic Smart Data Platform (SDP) Owner Transfer and Mortgage data was formerly known as the CoreLogic Deed data. The CoreLogic Deed data contained both owner transfer and mortgage information. In the CoreLogic Smart Data Platform (SDP), this data was separated into two tables: Owner Transfer and Mortgage. Between the two tables, the CoreLogic Smart Data Platform (SDP) Owner Transfer and Mortgage data contains almost all of the variables that were included in the CoreLogic Deed data. Further, each CoreLogic Smart Data Platform (SDP) table is augmented with additional owner transfer and mortgage characteristics.
In the United States, parcel data is public record information that describes a division of land (also referred to as "property" or "real estate"). Each parcel is given a unique identifier called an Assessor’s Parcel Number or APN. The two principal types of records maintained by county government agencies for each parcel of land are deed and property tax records. When a real estate transaction takes place (e.g. a change in ownership), a property deed must be signed by both the buyer and seller. The deed will then be filed with the County Recorder’s offices, sometimes called the County Clerk-Recorder or other similar title. Property tax records are maintained by County Tax Assessor’s offices; they show the amount of taxes assessed on a parcel and include a detailed description of any structures or buildings on the parcel, including year built, square footages, building type, amenities like a pool, etc. There is not a uniform format for storing parcel data across the thousands of counties and county equivalents in the U.S.; laws and regulations governing real estate/property sales vary by state. Counties and county equivalents also have inconsistent approaches to archiving historical parcel data.
To fill researchers’ needs for uniform parcel data, CoreLogic collects, cleans, and normalizes public records that they collect from U.S. County Assessor and Recorder offices. CoreLogic augments this data with information gathered from other public and non-public sources (e.g., loan issuers, real estate agents, landlords, etc.). The Stanford Libraries has purchased bulk extracts from CoreLogic’s parcel data, including mortgage, owner transfer, pre-foreclosure, and historical and contemporary tax assessment data. Data is bundled into pipe-delimited text files, which are uploaded to Data Farm (Redivis) for preview, extraction and analysis.
For more information about how the data was prepared for Redivis, please see CoreLogic 2024 GitLab.
The Property, Mortgage, Owner Transfer, Historical Property and Pre-Foreclosure data can be linked on the CLIP
, a unique identification number assigned to each property.
Mortgage records can be linked to a transaction using the MORTGAGE_COMPOSITE_TRANSACTION_ID
.
For more information about included variables, please see:
%3C!-- --%3E
For a count of records per FIPS code, please see core_logic_sdp_owner_transfer_counts_2024.txt and core_logic_sdp_mortgage_counts_2024.txt.
For more information about how the CoreLogic Smart Data Platform: Owner Transfer and Mortgage data compares to legacy data, please see core_logic_legacy_content_mapping.pdf.
Data access is required to view this section.
https://www.icpsr.umich.edu/web/ICPSR/studies/39093/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39093/terms
The Home Mortgage Disclosure Act (HMDA) database (Consumer Financial Protection Bureau, 2022) has compiled mortgage lending data since 1981, but the collection and dissemination methods have changed over time (Federal Financial Institutions Examination Council, 2018), creating barriers to conducting longitudinal analyses. This HMDA Longitudinal Dataset (HLD) organizes and standardizes information across different eras of HMDA data collection between 1981 and 2021, enabling such analysis. This collection contains two types of datasets: 1) HMDA aggregated data by census tract for each decade and 2) HMDA aggregated data by census tract for individual years. Items for analysis include borrower income values, mortgages by loan type (e.g., conventional, Federal Housing Administration (FHA), Veterans Affairs (VA), refinances), and mortgages by borrower race and gender.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortgage Application in the United States increased by 9.40 percent in the week ending July 4 of 2025 over the previous week. This dataset provides - United States MBA Mortgage Applications - actual values, historical data, forecast, chart, statistics, economic calendar and news.
The National Mortgage Database (NMDB®) is a nationally representative five percent sample of residential mortgages in the United States.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Delinquency Rate on Single-Family Residential Mortgages, Booked in Domestic Offices, Banks Ranked 1st to 100th Largest in Size by Assets (DRSFRMT100N) from Q1 1991 to Q1 2025 about domestic offices, delinquencies, 1-unit structures, mortgage, family, residential, domestic, assets, banks, depository institutions, rate, and USA.
Includes all terminated HUD Multifamily insured mortgages. It includes the Holder and Servicer at the time the mortgage was terminated. Data is updated monthly and is extracted from MFIS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Consumer Loan: Residential Housing Mortgage Loan data was reported at 25,750.000 RMB bn in 2018. This records an increase from the previous number of 21,860.500 RMB bn for 2017. China Consumer Loan: Residential Housing Mortgage Loan data is updated yearly, averaging 2,473.416 RMB bn from Dec 1997 (Median) to 2018, with 20 observations. The data reached an all-time high of 25,750.000 RMB bn in 2018 and a record low of 13.100 RMB bn in 1997. China Consumer Loan: Residential Housing Mortgage Loan data remains active status in CEIC and is reported by The People's Bank of China. The data is categorized under China Premium Database’s Money and Banking – Table CN.KB: Loan: Consumer Loan.
Our US Home Ownership Data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes various data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences. 1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc. 2. Demographics - Gender, Age Group, Marital Status, Language etc. 3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc 4. Persona - Consumer type, Communication preferences, Family type, etc 5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc. 6. Household - Number of Children, Number of Adults, IP Address, etc. 7. Behaviours - Brand Affinity, App Usage, Web Browsing etc. 8. Firmographics - Industry, Company, Occupation, Revenue, etc 9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc. 10. Auto - Car Make, Model, Type, Year, etc. 11. Housing - Home type, Home value, Renter/Owner, Year Built etc.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases: 360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation. Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity. Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
The CoreLogic Loan-Level Market Analytics (LLMA) for primary mortgages dataset contains detailed loan data, including origination, events, performance, forbearance and inferred modification data.
CoreLogic sources the Loan-Level Market Analytics data directly from loan servicers. CoreLogic cleans and augments the contributed records with modeled data. The Data Dictionary indicates which fields are contributed and which are inferred.
The Loan-Level Market Analytics data is aimed at providing lenders, servicers, investors, and advisory firms with the insights they need to make trustworthy assessments and accurate decisions. Stanford Libraries has purchased the Loan-Level Market Analytics data for researchers interested in housing, economics, finance and other topics related to prime and subprime first lien data.
CoreLogic provided the data to Stanford Libraries as pipe-delimited text files, which we have uploaded to Data Farm (Redivis) for preview, extraction and analysis.
For more information about how the data was prepared for Redivis, please see CoreLogic 2024 GitLab.
Per the End User License Agreement, the LLMA Data cannot be commingled (i.e. merged, mixed or combined) with Tax and Deed Data that Stanford University has licensed from CoreLogic, or other data which includes the same or similar data elements or that can otherwise be used to identify individual persons or loan servicers.
The 2015 major release of CoreLogic Loan-Level Market Analytics (for primary mortgages) was intended to enhance the CoreLogic servicing consortium through data quality improvements and integrated analytics. See **CL_LLMA_ReleaseNotes.pdf **for more information about these changes.
For more information about included variables, please see CL_LLMA_Data_Dictionary.pdf.
**
For more information about how the database was set up, please see LLMA_Download_Guide.pdf.
Data access is required to view this section.
The National Survey of Mortgage Originations (NSMO) is quarterly mail survey sent to 6,000 borrowers associated with newly-originated mortgages a component of the National Mortgage Database (NMDB®) program.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Public Use Database (PUDB) is released annually to meet FHFA’s requirement under 12 U.S.C. 4543 and 4546(d) to publicly disclose data about the Enterprises’ single-family and multifamily mortgage acquisitions. The datasets supply mortgage lenders, planners, researchers, policymakers, and housing advocates with information concerning the flow of mortgage credit in America’s neighborhoods. Beginning with data for mortgages acquired in 2018, FHFA has ordered that the PUDB be expanded to include additional data that is the same as the data definitions used by the regulations implementing the Home Mortgage Disclosure Act, as required by 12 U.S.C. 4543(a)(2) and 4546(d)(1).The PUDB single-family datasets include loan-level records that include data elements on the income, race, and sex of each borrower as well as the census tract location of the property, loan-to-value (LTV) ratio, age of mortgage note, and affordability of the mortgage. New for 2018 are the inclusion of the borrower’s debt-to-income (DTI) ratio and detailed LTV ratio data at the census tract level. The PUDB multifamily property-level datasets include information on the unpaid principal balance and type of seller/servicer from which the Enterprise acquired the mortgage. New for 2018 is the inclusion of property size data at the census tract level. The multifamily unit-class files also include information on the number and affordability of the units in the property. Both the single-family and multifamily datasets include indicators of whether the purchases are from “underserved” census tracts, as defined in terms of median income and minority percentage of population.Prior to 2010 the single-family PUDB consisted of three files: Census Tract, National A, and National B files. With the 2010 PUDB a fourth file, National C, was added to provide information on high-cost mortgages acquired by the Enterprises. The single-family Census Tract file includes information on the location of the property based on the 2010 Census for acquisition years 2012 through 2021, and the 2020 Census beginning with the 2022 acquisition year. The National files contain other information but lack detailed geographic information in order to protect Enterprise proprietary data. The multifamily datasets also consist of a Census Tract file, and a National file without detailed geographic information.Several dashboards are available to analyze the data:Enterprise Multifamily Public Use Database DashboardThe Enterprise Multifamily Public Use Database (PUDB) Dashboard provides users an interactive way to generate and visualize Enterprise PUDB data of multifamily mortgage acquisitions by Fannie Mae and Freddie Mac. It shows characteristics about multifamily loans, properties and units at the national level, and characteristics about multifamily loans and properties at the state level. It includes key statistics, time series charts, and state maps of multifamily housing characteristics such as median loan amount, number of properties, average number of units per property, and unit affordability. The underlying aggregate statistics presented in the dashboard come from three multifamily data files in the Enterprise PUDB, updated annually since 2008, including two property-level datasets and a data file on the size and affordability of individual units.Enterprise Multifamily Public Use DashboardPress Release - FHFA Releases Data Visualization Dashboard for Enterprises’ Multifamily Mortgage AcquisitionsMortgage Loan and Natural Disaster DashboardFHFA published an interactive Mortgage Loan and Natural Disaster Dashboard that combines FHFA’s PUDB reports on single-family and multifamily acquisitions for the regulated entities, FEMA’s National Risk Index (NRI), and FHFA’s Duty to Serve 2023 High-Needs rural areas. Desired geographies can be exported to .pdf and Excel from the Public Use Database and National Risk Index Dashboard.Mortgage Loan and Natural Disaster DashboardMortgage Loan and Natural Disaster Dashboard FAQs
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for New Home Mortgage Applications for United States (M0264BUSM500NNBR) from Jan 1947 to Mar 1956 about mortgage, new, housing, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Survey of Mortgage Originations (NSMO) is a component of the National Mortgage Database (NMDB®) program. It is a quarterly mail survey jointly funded and managed by the Federal Housing Finance Agency (FHFA) and the Consumer Financial Protection Bureau (CFPB). NSMO provides unique and rich information for a nationally representative sample of newly originated closed-end first-lien residential mortgages in the United States, particularly about borrowers’ experiences getting a mortgage, their perceptions of the mortgage market, and their future expectations. This voluntary survey is administered by Westat, a survey and data collection corporation, to the borrowers associated with the sample mortgages. The respondents can either return the English questionnaire by mail or complete the survey online in English or Spanish. NSMO draws its sample from newly originated mortgages that are part of the NMDB, which is a 1-in-20 sample of closed-end first-lien residential mortgages newly reported to one of the three national credit bureaus. Beginning with mortgages originated in 2013, a simple random sample of about 6,000 mortgages per quarter is drawn for NSMO from loans newly added to the NMDB. The NSMO survey has been conducted quarterly since the first quarter of 2014. The current survey package sent to the respondents can be viewed here.The NSMO public use file was updated on July 1, 2024 to append additional survey records and additional quarters of mortgage performance information. It replaced the public use file released on March 3, 2023. The updated file contains 50,542 sample mortgages originated from 2013 through 2021 based on the first 34 quarterly waves of the NSMO survey. For these mortgages, the updated file contains mortgage performance information through the third quarter of 2023.The original NSMO public use file was published on November 8, 2018, containing mortgages originated from 2013 through 2016. It was first updated on February 20, 2020, containing mortgages originated through 2017. Subsequent updates were published on July 29, 2021 (containing mortgages originated through 2019) and on December 13, 2022 and March 3, 2023 (both containing mortgages originated through 2020).
Comprehensive dataset of 120,096 Mortgage lenders in United States as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
The National Mortgage Database (NMDB®) is a nationally representative five percent sample of residential mortgages in the United States.