Dataset of UK mortgage products with 1-year fixed terms, including initial rates, APRC, fees, and LTV percentages.
This table contains 51 series, with data starting from 2013, and some select series starting from 2016. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada), Components (51 items: Total, funds advanced, residential mortgages, insured; Variable rate, insured; Fixed rate, insured, less than 1 year; Fixed rate, insured, from 1 to less than 3 years; ...), and Unit of measure (1 item: Dollars). For additional clarification on the component dimension, please visit the OSFI website for the Report on New and Existing Lending.
The monthly interest rates on deposits from a sample of Norwegian banks and mortgage companies increased sharply between July 2018 and January 2025. Interest rates rose particularly fast throughout 2022 and 2023 and stood at 3.31 percent as of January 2025.
https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/
Explore the historical Whois records related to lowest-mortgage-rates.net (Domain). Get insights into ownership history and changes over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundWhere the data come fromThe Mortgage Performance Trends data come from the NMDB, a joint project we’ve undertaken with the Federal Housing Finance Agency (FHFA). For more information, visit the NMDB program page .The core data in the NMDB come from data maintained by one of the top three nationwide credit repositories. The NMDB has a nationally representative, 5 percent sample of all outstanding, closed-end, first-lien, 1–4 family residential mortgages.The data and analyses presented herein are the sole product of the CFPB. Use of information downloaded from our website, and any alteration or representation regarding such information by a party, is the responsibility of such party.Why the data matterMortgage delinquency rates reflect the health of the mortgage market, and the health of the overall economy.The 30–89 mortgage delinquency rate is a measure of early stage delinquencies. It generally captures borrowers that have missed one or two payments. This rate can be an early indicator of mortgage market health. However, this rate is seasonally volatile and sensitive to temporary economic shocks.The 90–day delinquency rate is a measure of serious delinquencies. It generally captures borrowers that have missed three or more payments. This rate measures more severe economic distress.PrivacyThe Mortgage Performance Trends data have many protections in place to protect personal identity. Before the CFPB or the FHFA receive any data for the NMDB, all records are stripped of information that might reveal a consumer’s identity, such as names, addresses, and Social Security numbers. All data shown are aggregated by state, metropolitan statistical area, or county.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2022 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bank Lending Rate in Portugal decreased to 4.09 percent in April from 4.24 percent in March of 2025. This dataset provides - Portugal Bank Lending Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
In April 2025, global inflation rates and central bank interest rates showed significant variation across major economies. Most economies initiated interest rate cuts from mid-2024 due to declining inflationary pressures. The U.S., UK, and EU central banks followed a consistent pattern of regular rate reductions throughout late 2024. In early 2025, Russia maintained the highest interest rate at 21 percent, while Japan retained the lowest at 0.5 percent. Varied inflation rates across major economies The inflation landscape varies considerably among major economies. China had the lowest inflation rate at -0.1 percent in April 2025. In contrast, Russia maintained a high inflation rate of 10.2 percent. These figures align with broader trends observed in early 2025, where China had the lowest inflation rate among major developed and emerging economies, while Russia's rate remained the highest. Central bank responses and economic indicators Central banks globally implemented aggressive rate hikes throughout 2022-23 to combat inflation. The European Central Bank exemplified this trend, raising rates from 0 percent in January 2022 to 4.5 percent by September 2023. A coordinated shift among major central banks began in mid-2024, with the ECB, Bank of England, and Federal Reserve initiating rate cuts, with forecasts suggesting further cuts through 2025 and 2026.
Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.
Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
Consumer Graph Use Cases:
360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.
Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment
Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.
Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
Using Factori Consumer Data graph you can solve use cases like:
Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.
Lookalike Modeling
Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers
And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data
Formaat: PDF
Omvang: 60 Kb
Online beschikbaar: [01-12-2014]
This article was published on the Guardian website at 20.25 BST on Thursday 11 June 2009. A version appeared on p1 of the Main section section of the Guardian on Friday 12 June 2009. It was last modified at 12.21 BST on Monday 19 May 2014.
© 2014 Guardian News and Media Limited or its affiliated companies. All rights reserved.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The indicator shows the number of social mortgages granted during the year. The Walloon Social Credit Society (SWCS) and the Housing Fund for Large Families of Wallonia (FLW) are particularly competent to grant mortgages at favourable rates to households of modest conditions. The composition of the household determines the competent body. If the household has at least three dependent children*, it is the FLW that processes the request, otherwise it is the SWCS. In the case of social loans, the rates charged are lower than those found in the conventional banking market. They also apply more flexible conditions in terms of borrowed quotity and income. They are set by scales that depend for the FLW on the composition and income of the household, and for the SWCS on the level of income and the amount borrowed. This policy of social loans reflects the willingness of the public authorities to help households of modest conditions access to real estate property. See also: — the website of the ‘\2’, in particular to find out how dependent children are counted: — the website of the “\2”.
The number of visits to Zillow website and mobile application increased by almost 30 percent from 2019 to 2022, peaking at 10.5 billion visits. In 2023, the visits count decreased by five percent due to macro housing market factors including low housing inventory, fewer new for-sale listings, increases and volatility in mortgage interest rates as well as home price fluctuations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The raw datasets provided here are intended for use in a Data in Brief article. These comprehensive files, sourced from the Freddie Mac website, offer quarterly snapshots of mortgage loans that have been originated in the USA since 1999, along with details of their subsequent repayment behaviours. This data remains current and is updated every three months. Specifically, the loan origination data present here encompasses amortized fixed-rate mortgage loans from 1999 up to June 2022. In contrast, the performance data is presented on a monthly basis, detailing loan repayment profiles from 1999 until September 30, 2022. Both the origination and performance datasets feature a unique loan ID, which can be utilized to integrate the data on loan originations with that of loan repayments.
The average monthly unique users of Zillow website and mobile applications moderately increased from 2020 to 2022, peaking at 220 million users. In 2023, the user count decreased by three percent due to macro housing market factors, such as low housing inventory, fewer new listings, mortgage rate volatility, and home price fluctuations.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 102 series, with data starting from 2013, and some select series starting from 2016. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada), Components (51 items: Total, funds advanced, residential mortgages, insured; Variable rate, insured; Fixed rate, insured, less than 1 year; Fixed rate, insured, from 1 to less than 3 years; ...), and Unit of measure (2 items: Dollars; Interest rate). For additional clarification on the component dimension, please visit the OSFI website for the Report on New and Existing Lending.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Beginning in data year 2020, categories were added to Mortgage Status to account for the variety of mortgage arrangements that may exist. See “American Community Survey Subject Definitions” for more information on Mortgage Status..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for FOMC Summary of Economic Projections for the Fed Funds Rate, Median (FEDTARMD) from 2025 to 2027 about projection, federal, median, rate, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Charge-Off Rate on Commercial Real Estate Loans (Excluding Farmland), Booked in Domestic Offices, All Commercial Banks (CORCREXFACBS) from Q1 1991 to Q1 2025 about farmland, charge-offs, domestic offices, real estate, commercial, domestic, loans, banks, depository institutions, rate, and USA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Tell us what you think. Provide feedback to help make American Community Survey data more useful for you..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2016 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2016 American Community Survey 1-Year Estimates
Dataset of UK mortgage products with 1-year fixed terms, including initial rates, APRC, fees, and LTV percentages.