This statistic displays the percentage of adults in the U.S. who had a loved one that passed away in the last five years and the location at which their loved one died. According to the data, 34 percent of survey respondents had a loved one die at home, compared to just 10 percent that had a loved one that died in a nursing home.
The leading causes of death in the United States have changed significantly from the year 1900 to the present. Leading causes of death in 1900, such as tuberculosis, gastrointestinal infections, and diphtheria have seen huge decreases in death rates and are no longer among the leading causes of death in the United States. However, other diseases such as heart disease and cancer have seen increased death rates. Vaccinations One major factor contributing to the decrease in death rates for many diseases since the year 1900 is the introduction of vaccinations. The decrease seen in the rates of death due to pneumonia and influenza is a prime example of this. In 1900, pneumonia and influenza were the leading causes of death, with around 202 deaths per 100,000 population. However, in 2023 pneumonia and influenza were not even among the ten leading causes of death. Cancer One disease that has seen a large increase in death rates since 1900 is cancer. Cancer currently accounts for almost 20 percent of all deaths in the United States, with death rates among men higher than those for women. The deadliest form of cancer for both men and women is cancer of the lung and bronchus. Some of the most common avoidable risk factors for cancer include smoking, drinking alcohol, sun exposure, and obesity.
THIS DATASET WAS LAST UPDATED AT 2:10 AM EASTERN ON OCT. 7
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
In the United States, the leading causes of death among women are heart disease and cancer. Heart disease and cancer are similarly the leading causes of death among U.S. men. In 2023, heart disease accounted for 20.7 percent of all deaths among women in the United States, while cancer accounted for 19.8 percent of deaths. COVID-19 was the third leading cause of death among women in 2020 and 2021, and the fourth leading cause in 2022, however, by 2023 it had dropped to ninth place. Cancer among women in the U.S. The most common types of cancer among U.S. women are breast, lung and bronchus, and colon and rectum. In 2025, there were around 316,950 new breast cancer cases among women, compared to 115,970 new cases of lung and bronchus cancer. Although breast cancer is the most common form of cancer among women in the United States, lung and bronchus cancer causes the highest number of cancer deaths. In 2025, around 60,540 women were expected to die from lung and bronchus cancer, compared to 42,170 from breast cancer. Breast cancer Although breast cancer is the second most deadly form of cancer among women, rates of death have decreased over the past few decades. This decrease is possibly due to early detection, progress in therapy, and increasing awareness of risk factors. In 2023, the death rate due to breast cancer was 18.6 per 100,000 population, compared to a rate of 33.3 per 100,000 in the year 1990. The state with the highest rate of deaths due to breast cancer is Oklahoma, while South Dakota had the lowest rates.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
This visualization provides weekly data on the number of deaths by jurisdiction of occurrence and cause of death. Counts of deaths in more recent weeks can be compared with counts from earlier years to determine if the number is higher than expected. Selected causes of death are shown, based on analyses of the most prevalent comorbid conditions reported on death certificates where COVID-19 was listed as a cause of death (see https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm#Comorbidities). Cause of death counts are based on the underlying cause of death, and presented for Respiratory diseases, Circulatory diseases, Malignant neoplasms, and Alzheimer disease and dementia. Estimated numbers of deaths due to these other causes of death could represent misclassified COVID-19 deaths, or potentially could be indirectly related to COVID-19 (e.g., deaths from other causes occurring in the context of health care shortages or overburdened health care systems). Deaths with an underlying cause of death of COVID-19 are not included in these estimates of deaths due to other causes. Deaths due to external causes (i.e. injuries) or unknown causes are excluded. For more detail, see the Technical Notes.
As of 2023, the third leading cause of death among teenagers aged 15 to 19 years in the United States was intentional self-harm or suicide, contributing to around 17 percent of deaths among this age group. The leading cause of death at that time was unintentional injuries, contributing to around 38.6 percent of deaths, while 20.7 percent of all deaths in this age group were due to assault or homicide. Cancer and heart disease, the overall leading causes of death in the United States, are also among the leading causes of death among U.S. teenagers. Adolescent suicide in the United States In 2021, around 22 percent of students in grades 9 to 12 reported that they had seriously considered attempting suicide in the past year. Female students were around twice as likely to report seriously considering suicide compared to male students. In 2023, New Mexico had the highest rate of suicides among U.S. teenagers, with around 28 deaths per 100,000 teenagers, followed by Idaho with a rate of 22.5 per 100,000. The states with the lowest death rates among adolescents are New Jersey and New York. Mental health treatment Suicidal thoughts are a clear symptom of mental health issues. Mental health issues are not rare among children and adolescents, and treatment for such issues has become increasingly accepted and accessible. In 2021, around 15 percent of boys and girls aged 5 to 17 years had received some form of mental health treatment in the past year. At that time, around 35 percent of youths aged 12 to 17 years in the United States who were receiving specialty mental health services were doing so because they had thought about killing themselves or had already tried to kill themselves.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe success of the “war on cancer” initiated in 1971 continues to be debated, with trends in cancer mortality variably presented as evidence of progress or failure. We examined temporal trends in death rates from all-cancer and the 19 most common cancers in the United States from 1970–2006.Methodology/Principal FindingsWe analyzed trends in age-standardized death rates (per 100,000) for all cancers combined, the four most common cancers, and 15 other sites from 1970–2006 in the United States using joinpoint regression model. The age-standardized death rate for all-cancers combined in men increased from 249.3 in 1970 to 279.8 in 1990, and then decreased to 221.1 in 2006, yielding a net decline of 21% and 11% from the 1990 and 1970 rates, respectively. Similarly, the all-cancer death rate in women increased from 163.0 in 1970 to 175.3 in 1991 and then decreased to 153.7 in 2006, a net decline of 12% and 6% from the 1991 and 1970 rates, respectively. These decreases since 1990/91 translate to preventing of 561,400 cancer deaths in men and 205,700 deaths in women. The decrease in death rates from all-cancers involved all ages and racial/ethnic groups. Death rates decreased for 15 of the 19 cancer sites, including the four major cancers, with lung, colorectum and prostate cancers in men and breast and colorectum cancers in women.Conclusions/SignificanceProgress in reducing cancer death rates is evident whether measured against baseline rates in 1970 or in 1990. The downturn in cancer death rates since 1990 result mostly from reductions in tobacco use, increased screening allowing early detection of several cancers, and modest to large improvements in treatment for specific cancers. Continued and increased investment in cancer prevention and control, access to high quality health care, and research could accelerate this progress.
In the United States, the average person has a * in * chance of dying from heart disease and a * in * chance of dying from cancer. In comparison, the odds of dying from a dog attack are * in ******. Sadly, the odds of dying from an opioid overdose in the U.S. are * in **, making death from an opioid overdose more likely than dying from a motor vehicle accident. Opioid overdose death rates have increased insignificantly in the U.S. over the past decade. Leading causes of death in the United States Given the high lifetime odds of dying from heart disease or cancer, it is unsurprising that heart disease and cancer are the leading causes of death in the United States. Together, heart disease and cancer account for around ** percent of all deaths. Other leading causes of death include accidents, stroke, chronic lower respiratory diseases, and Alzheimer’s disease. However, in 2020 and 2021, COVID-19 was the third leading cause of death in the United States and remained the fourth leading cause of death in 2022, with around **** deaths per 100,000 population. Heart disease in the U.S. In 2023, the death rate from heart disease in the United States was around *** per 100,000 population. The states with the highest rates of death from heart disease are Oklahoma, Mississippi, and Alabama. Coronary heart disease is the most common form of heart disease in the United States. Common risk factors for heart disease include high blood pressure, high cholesterol, smoking, excessive drinking, and being overweight or obese.
This datasets displays the summary of the Geographic Spread of Influenza throughout the United States for the week ending on 1.12.2008. Each state is given a flu Status that is dependent on the spread of influenza throughout the state for the particular week. There are five levels of status that a state can obtain. They are: * No Activity: No laboratory-confirmed cases of influenza and no reported increase in the number of cases of ILI. * Sporadic: Small numbers of laboratory-confirmed influenza cases or a single laboratory-confirmed influenza outbreak has been reported, but there is no increase in cases of ILI. * Local: Outbreaks of influenza or increases in ILI cases and recent laboratory-confirmed influenza in a single region of the state. * Regional: Outbreaks of influenza or increases in ILI and recent laboratory confirmed influenza in at least 2 but less than half the regions of the state. * Widespread: Outbreaks of influenza or increases in ILI cases and recent laboratory-confirmed influenza in at least half the regions of the state. The information comes from the Centers for Disease Control and Prevention (CDC) To see more information about how this status is determined see http://www.cdc.gov/flu/weekly/fluactivity.htm for a full explanation of their system.
Infant Mortality Rate (deaths per 1,000 live births) is the number of deaths occurring to infants under 1 year of age per 1,000 live births. The data are reported by place of residence, not place of death. The rate as well as the rank figures are included in this data. SOURCE: * U.S. Centers for Disease Control and Prevention, National Center for Health Statistics.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
In 2022, the most significant cause of death among men in the United States was heart disease, which contributed to **** percent of deaths. COVID-19 was the third leading cause of death among U.S. men in both 2020 and 2021, and the fourth leading cause in 2022. This statistic shows the distribution of the ** leading causes of death among men in the United States from 2020 to 2022.
In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.
UNICEF's country profile for United States, including under-five mortality rates, child health, education and sanitation data.
This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction: Using a large diverse population of incident end-stage kidney disease (ESKD) patients from an integrated health system, we sought to evaluate the concordance of causes of death (CODs) between the underlying COD from the United States Renal Data System (USRDS) registry and CODs obtained from Kaiser Permanente Southern California (KPSC). Methods: A retrospective cohort study was performed among incident ESKD patients who had mortality records and CODs reported in both KPSC and USRDS databases between January 1, 2007, and December 31, 2016. Underlying CODs reported by the KPSC were compared to the CODs reported by USRDS. Overall and subcategory-specific COD agreements were assessed using Cohen’s weighted kappa statistic (95% CI). Proportions of positive and negative agreement were also determined. Results: Among 4,188 ESKD patient deaths, 4,118 patients had CODs recorded in both KPSC and USRDS. The most common KPSC CODs were circulatory system diseases (35.7%), endocrine/nutritional/metabolic diseases (24.2%), genitourinary diseases (12.9%), and neoplasms (9.6%). Most common USRDS CODs were cardiac disease (46.9%), withdrawal from dialysis (12.6%), and infection (10.1%). Of 2,593 records with causes listed NOT as “Other,” 453 (17.4%) had no agreement in CODs between the USRDS and the underlying, secondary, tertiary, or quaternary causes recorded by KPSC. In comparing CODs recorded within KPSC to the USRDS, Cohen’s weighted kappa (95% CI) was 0.20 (0.18–0.22) with overall agreement of 36.4%. Conclusion: Among an incident ESKD population with mortality records, we found that there was only fair or slight agreement between CODs reported between the USRDS registry and KPSC, a large integrated health care system.
Copyright 2020 by The New York Times Company
[ U.S. Data (Raw CSV) | U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
United States Data Data on cumulative coronavirus cases and deaths can be found in three files, one for each of these geographic levels: U.S., states and counties.
Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information. If a county is not listed for a date, then there were zero reported confirmed cases and deaths.
State and county files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
U.S. National-Level Data The daily number of cases and deaths nationwide, including states, U.S. territories and the District of Columbia, can be found in the us.csv file. (Raw CSV file here.)
date,cases,deaths 2020-01-21,1,0 ... State-Level Data State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths 2020-01-21,Washington,53,1,0 ... County-Level Data County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,cases,deaths 2020-01-21,Snohomish,Washington,53061,1,0 ... In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.
Methodology and Definitions The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial level have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.
When the information is available, we count patients where they are being treated, not necessarily where they live.
In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.
For those reasons, our data will in some cases not exactly match with the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their own records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add informati...
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
This statistic displays the percentage of adults in the U.S. who had a loved one that passed away in the last five years and the location at which their loved one died. According to the data, 34 percent of survey respondents had a loved one die at home, compared to just 10 percent that had a loved one that died in a nursing home.