100+ datasets found
  1. Common places where deaths occur in the U.S. as of 2016

    • statista.com
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Common places where deaths occur in the U.S. as of 2016 [Dataset]. https://www.statista.com/statistics/741886/common-locations-of-death-in-the-us/
    Explore at:
    Dataset updated
    Nov 30, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 30, 2016 - May 29, 2016
    Area covered
    United States
    Description

    This statistic displays the percentage of adults in the U.S. who had a loved one that passed away in the last five years and the location at which their loved one died. According to the data, 34 percent of survey respondents had a loved one die at home, compared to just 10 percent that had a loved one that died in a nursing home.

  2. Major causes of death in the U.S.: 1900 and 2023

    • tokrwards.com
    • statista.com
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Elflein (2025). Major causes of death in the U.S.: 1900 and 2023 [Dataset]. https://tokrwards.com/?_=%2Fstudy%2F46784%2Finfluenza-in-the-us%2F%23D%2FIbH0PhabzN99vNwgDeng71Gw4euCn%2B
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    John Elflein
    Area covered
    United States
    Description

    The leading causes of death in the United States have changed significantly from the year 1900 to the present. Leading causes of death in 1900, such as tuberculosis, gastrointestinal infections, and diphtheria have seen huge decreases in death rates and are no longer among the leading causes of death in the United States. However, other diseases such as heart disease and cancer have seen increased death rates. Vaccinations One major factor contributing to the decrease in death rates for many diseases since the year 1900 is the introduction of vaccinations. The decrease seen in the rates of death due to pneumonia and influenza is a prime example of this. In 1900, pneumonia and influenza were the leading causes of death, with around 202 deaths per 100,000 population. However, in 2023 pneumonia and influenza were not even among the ten leading causes of death. Cancer One disease that has seen a large increase in death rates since 1900 is cancer. Cancer currently accounts for almost 20 percent of all deaths in the United States, with death rates among men higher than those for women. The deadliest form of cancer for both men and women is cancer of the lung and bronchus. Some of the most common avoidable risk factors for cancer include smoking, drinking alcohol, sun exposure, and obesity.

  3. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Sep 28, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 2:10 AM EASTERN ON OCT. 7

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  4. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +2more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  5. Leading causes of death among women in the United States 2020-2023

    • thefarmdosupply.com
    • statista.com
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Elflein (2025). Leading causes of death among women in the United States 2020-2023 [Dataset]. https://www.thefarmdosupply.com/?_=%2Fstudy%2F41067%2Fwomen-s-health-statista-dossier%2F%23RslIny40YoL1bbEgyeyUHEfOSI5zbSLA
    Explore at:
    Dataset updated
    Oct 4, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    John Elflein
    Area covered
    United States
    Description

    In the United States, the leading causes of death among women are heart disease and cancer. Heart disease and cancer are similarly the leading causes of death among U.S. men. In 2023, heart disease accounted for 20.7 percent of all deaths among women in the United States, while cancer accounted for 19.8 percent of deaths. COVID-19 was the third leading cause of death among women in 2020 and 2021, and the fourth leading cause in 2022, however, by 2023 it had dropped to ninth place. Cancer among women in the U.S. The most common types of cancer among U.S. women are breast, lung and bronchus, and colon and rectum. In 2025, there were around 316,950 new breast cancer cases among women, compared to 115,970 new cases of lung and bronchus cancer. Although breast cancer is the most common form of cancer among women in the United States, lung and bronchus cancer causes the highest number of cancer deaths. In 2025, around 60,540 women were expected to die from lung and bronchus cancer, compared to 42,170 from breast cancer. Breast cancer Although breast cancer is the second most deadly form of cancer among women, rates of death have decreased over the past few decades. This decrease is possibly due to early detection, progress in therapy, and increasing awareness of risk factors. In 2023, the death rate due to breast cancer was 18.6 per 100,000 population, compared to a rate of 33.3 per 100,000 in the year 1990. The state with the highest rate of deaths due to breast cancer is Oklahoma, while South Dakota had the lowest rates.

  6. Statewide Death Profiles

    • data.chhs.ca.gov
    csv, zip
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(2026589), csv(463460), csv(200270), csv(5034), csv(5401561), csv(16301), csv(164006), csv(4689434), csv(385695), csv(419332), zipAvailable download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  7. Weekly Counts of Death by Jurisdiction and Select Causes of Death

    • datasets.ai
    • data.virginia.gov
    • +7more
    23, 40, 55, 8
    Updated Sep 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2023). Weekly Counts of Death by Jurisdiction and Select Causes of Death [Dataset]. https://datasets.ai/datasets/weekly-counts-of-death-by-jurisdiction-and-cause-of-death
    Explore at:
    8, 40, 55, 23Available download formats
    Dataset updated
    Sep 27, 2023
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.

    This visualization provides weekly data on the number of deaths by jurisdiction of occurrence and cause of death. Counts of deaths in more recent weeks can be compared with counts from earlier years to determine if the number is higher than expected. Selected causes of death are shown, based on analyses of the most prevalent comorbid conditions reported on death certificates where COVID-19 was listed as a cause of death (see https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm#Comorbidities). Cause of death counts are based on the underlying cause of death, and presented for Respiratory diseases, Circulatory diseases, Malignant neoplasms, and Alzheimer disease and dementia. Estimated numbers of deaths due to these other causes of death could represent misclassified COVID-19 deaths, or potentially could be indirectly related to COVID-19 (e.g., deaths from other causes occurring in the context of health care shortages or overburdened health care systems). Deaths with an underlying cause of death of COVID-19 are not included in these estimates of deaths due to other causes. Deaths due to external causes (i.e. injuries) or unknown causes are excluded. For more detail, see the Technical Notes.

  8. Leading causes of death among teenagers aged 15-19 years in the United...

    • statista.com
    • thefarmdosupply.com
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading causes of death among teenagers aged 15-19 years in the United States 2020-23 [Dataset]. https://www.statista.com/statistics/1017959/distribution-of-the-10-leading-causes-of-death-among-teenagers/
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of 2023, the third leading cause of death among teenagers aged 15 to 19 years in the United States was intentional self-harm or suicide, contributing to around 17 percent of deaths among this age group. The leading cause of death at that time was unintentional injuries, contributing to around 38.6 percent of deaths, while 20.7 percent of all deaths in this age group were due to assault or homicide. Cancer and heart disease, the overall leading causes of death in the United States, are also among the leading causes of death among U.S. teenagers. Adolescent suicide in the United States In 2021, around 22 percent of students in grades 9 to 12 reported that they had seriously considered attempting suicide in the past year. Female students were around twice as likely to report seriously considering suicide compared to male students. In 2023, New Mexico had the highest rate of suicides among U.S. teenagers, with around 28 deaths per 100,000 teenagers, followed by Idaho with a rate of 22.5 per 100,000. The states with the lowest death rates among adolescents are New Jersey and New York. Mental health treatment Suicidal thoughts are a clear symptom of mental health issues. Mental health issues are not rare among children and adolescents, and treatment for such issues has become increasingly accepted and accessible. In 2021, around 15 percent of boys and girls aged 5 to 17 years had received some form of mental health treatment in the past year. At that time, around 35 percent of youths aged 12 to 17 years in the United States who were receiving specialty mental health services were doing so because they had thought about killing themselves or had already tried to kill themselves.

  9. f

    Declining Death Rates Reflect Progress against Cancer

    • plos.figshare.com
    tiff
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmedin Jemal; Elizabeth Ward; Michael Thun (2023). Declining Death Rates Reflect Progress against Cancer [Dataset]. http://doi.org/10.1371/journal.pone.0009584
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ahmedin Jemal; Elizabeth Ward; Michael Thun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe success of the “war on cancer” initiated in 1971 continues to be debated, with trends in cancer mortality variably presented as evidence of progress or failure. We examined temporal trends in death rates from all-cancer and the 19 most common cancers in the United States from 1970–2006.Methodology/Principal FindingsWe analyzed trends in age-standardized death rates (per 100,000) for all cancers combined, the four most common cancers, and 15 other sites from 1970–2006 in the United States using joinpoint regression model. The age-standardized death rate for all-cancers combined in men increased from 249.3 in 1970 to 279.8 in 1990, and then decreased to 221.1 in 2006, yielding a net decline of 21% and 11% from the 1990 and 1970 rates, respectively. Similarly, the all-cancer death rate in women increased from 163.0 in 1970 to 175.3 in 1991 and then decreased to 153.7 in 2006, a net decline of 12% and 6% from the 1991 and 1970 rates, respectively. These decreases since 1990/91 translate to preventing of 561,400 cancer deaths in men and 205,700 deaths in women. The decrease in death rates from all-cancers involved all ages and racial/ethnic groups. Death rates decreased for 15 of the 19 cancer sites, including the four major cancers, with lung, colorectum and prostate cancers in men and breast and colorectum cancers in women.Conclusions/SignificanceProgress in reducing cancer death rates is evident whether measured against baseline rates in 1970 or in 1990. The downturn in cancer death rates since 1990 result mostly from reductions in tobacco use, increased screening allowing early detection of several cancers, and modest to large improvements in treatment for specific cancers. Continued and increased investment in cancer prevention and control, access to high quality health care, and research could accelerate this progress.

  10. Lifetime odds of dying from select causes in the U.S. in 2023

    • statista.com
    • tokrwards.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lifetime odds of dying from select causes in the U.S. in 2023 [Dataset]. https://www.statista.com/statistics/863023/odds-of-dying-from-select-causes-us/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In the United States, the average person has a * in * chance of dying from heart disease and a * in * chance of dying from cancer. In comparison, the odds of dying from a dog attack are * in ******. Sadly, the odds of dying from an opioid overdose in the U.S. are * in **, making death from an opioid overdose more likely than dying from a motor vehicle accident. Opioid overdose death rates have increased insignificantly in the U.S. over the past decade. Leading causes of death in the United States Given the high lifetime odds of dying from heart disease or cancer, it is unsurprising that heart disease and cancer are the leading causes of death in the United States. Together, heart disease and cancer account for around ** percent of all deaths. Other leading causes of death include accidents, stroke, chronic lower respiratory diseases, and Alzheimer’s disease. However, in 2020 and 2021, COVID-19 was the third leading cause of death in the United States and remained the fourth leading cause of death in 2022, with around **** deaths per 100,000 population. Heart disease in the U.S. In 2023, the death rate from heart disease in the United States was around *** per 100,000 population. The states with the highest rates of death from heart disease are Oklahoma, Mississippi, and Alabama. Coronary heart disease is the most common form of heart disease in the United States. Common risk factors for heart disease include high blood pressure, high cholesterol, smoking, excessive drinking, and being overweight or obese.

  11. g

    Centers for Disease Control and Prevention (CDC), Weekly Flu Report, USA,...

    • geocommons.com
    Updated May 13, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). Centers for Disease Control and Prevention (CDC), Weekly Flu Report, USA, Week ending 1.12.2008 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 13, 2008
    Dataset provided by
    Centers for Disease Control and Prevention (CDC)
    data
    Description

    This datasets displays the summary of the Geographic Spread of Influenza throughout the United States for the week ending on 1.12.2008. Each state is given a flu Status that is dependent on the spread of influenza throughout the state for the particular week. There are five levels of status that a state can obtain. They are: * No Activity: No laboratory-confirmed cases of influenza and no reported increase in the number of cases of ILI. * Sporadic: Small numbers of laboratory-confirmed influenza cases or a single laboratory-confirmed influenza outbreak has been reported, but there is no increase in cases of ILI. * Local: Outbreaks of influenza or increases in ILI cases and recent laboratory-confirmed influenza in a single region of the state. * Regional: Outbreaks of influenza or increases in ILI and recent laboratory confirmed influenza in at least 2 but less than half the regions of the state. * Widespread: Outbreaks of influenza or increases in ILI cases and recent laboratory-confirmed influenza in at least half the regions of the state. The information comes from the Centers for Disease Control and Prevention (CDC) To see more information about how this status is determined see http://www.cdc.gov/flu/weekly/fluactivity.htm for a full explanation of their system.

  12. g

    Kids Count, Infant Mortality Rate (deaths per 1000 live births), USA,...

    • geocommons.com
    Updated May 21, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Centers for Disease Control and Prevention, National Center for Health Statistics. (2008). Kids Count, Infant Mortality Rate (deaths per 1000 live births), USA, 1990-2004 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 21, 2008
    Dataset provided by
    data
    U.S. Centers for Disease Control and Prevention, National Center for Health Statistics.
    Description

    Infant Mortality Rate (deaths per 1,000 live births) is the number of deaths occurring to infants under 1 year of age per 1,000 live births. The data are reported by place of residence, not place of death. The rate as well as the rank figures are included in this data. SOURCE: * U.S. Centers for Disease Control and Prevention, National Center for Health Statistics.

  13. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  14. Leading causes of death among men in the United States 2020-2022

    • statista.com
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading causes of death among men in the United States 2020-2022 [Dataset]. https://www.statista.com/statistics/233278/distribution-of-the-10-leading-causes-of-death-among-men/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2022, the most significant cause of death among men in the United States was heart disease, which contributed to **** percent of deaths. COVID-19 was the third leading cause of death among U.S. men in both 2020 and 2021, and the fourth leading cause in 2022. This statistic shows the distribution of the ** leading causes of death among men in the United States from 2020 to 2022.

  15. Death rate by age and sex in the U.S. 2021

    • statista.com
    • tokrwards.com
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Death rate by age and sex in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241572/death-rate-by-age-and-sex-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.

  16. United States - Demographics, Health and Infant Mortality Rates

    • data.unicef.org
    Updated Sep 10, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNICEF (2015). United States - Demographics, Health and Infant Mortality Rates [Dataset]. https://data.unicef.org/country/usa/
    Explore at:
    Dataset updated
    Sep 10, 2015
    Dataset authored and provided by
    UNICEFhttp://www.unicef.org/
    Area covered
    United States
    Description

    UNICEF's country profile for United States, including under-five mortality rates, child health, education and sanitation data.

  17. NCHS - Age-adjusted Death Rates for Selected Major Causes of Death

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Age-adjusted Death Rates for Selected Major Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-age-adjusted-death-rates-for-selected-major-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  18. f

    Supplementary Material for: Causes of Death in End-Stage Kidney Disease:...

    • karger.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhandari S.K.; Zhou H.; Shaw S.F.; Shi J.; Tilluckdharry N.S.; Rhee C.M.; Jacobsen S.J.; Sim J.J. (2023). Supplementary Material for: Causes of Death in End-Stage Kidney Disease: Comparison between the United States Renal Data System and a Large Integrated Health Care System [Dataset]. http://doi.org/10.6084/m9.figshare.18133793.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Karger Publishers
    Authors
    Bhandari S.K.; Zhou H.; Shaw S.F.; Shi J.; Tilluckdharry N.S.; Rhee C.M.; Jacobsen S.J.; Sim J.J.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction: Using a large diverse population of incident end-stage kidney disease (ESKD) patients from an integrated health system, we sought to evaluate the concordance of causes of death (CODs) between the underlying COD from the United States Renal Data System (USRDS) registry and CODs obtained from Kaiser Permanente Southern California (KPSC). Methods: A retrospective cohort study was performed among incident ESKD patients who had mortality records and CODs reported in both KPSC and USRDS databases between January 1, 2007, and December 31, 2016. Underlying CODs reported by the KPSC were compared to the CODs reported by USRDS. Overall and subcategory-specific COD agreements were assessed using Cohen’s weighted kappa statistic (95% CI). Proportions of positive and negative agreement were also determined. Results: Among 4,188 ESKD patient deaths, 4,118 patients had CODs recorded in both KPSC and USRDS. The most common KPSC CODs were circulatory system diseases (35.7%), endocrine/nutritional/metabolic diseases (24.2%), genitourinary diseases (12.9%), and neoplasms (9.6%). Most common USRDS CODs were cardiac disease (46.9%), withdrawal from dialysis (12.6%), and infection (10.1%). Of 2,593 records with causes listed NOT as “Other,” 453 (17.4%) had no agreement in CODs between the USRDS and the underlying, secondary, tertiary, or quaternary causes recorded by KPSC. In comparing CODs recorded within KPSC to the USRDS, Cohen’s weighted kappa (95% CI) was 0.20 (0.18–0.22) with overall agreement of 36.4%. Conclusion: Among an incident ESKD population with mortality records, we found that there was only fair or slight agreement between CODs reported between the USRDS registry and KPSC, a large integrated health care system.

  19. Coronavirus (Covid-19) Data in the United States

    • kaggle.com
    Updated Apr 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wing (2020). Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.kaggle.com/datasets/gniwnyc/nytimescovid19usdataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 19, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Wing
    Area covered
    United States
    Description

    Copyright 2020 by The New York Times Company

    Coronavirus (Covid-19) Data in the United States

    [ U.S. Data (Raw CSV) | U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

    United States Data Data on cumulative coronavirus cases and deaths can be found in three files, one for each of these geographic levels: U.S., states and counties.

    Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information. If a county is not listed for a date, then there were zero reported confirmed cases and deaths.

    State and county files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.

    Download all the data or clone this repository by clicking the green "Clone or download" button above.

    U.S. National-Level Data The daily number of cases and deaths nationwide, including states, U.S. territories and the District of Columbia, can be found in the us.csv file. (Raw CSV file here.)

    date,cases,deaths 2020-01-21,1,0 ... State-Level Data State-level data can be found in the states.csv file. (Raw CSV file here.)

    date,state,fips,cases,deaths 2020-01-21,Washington,53,1,0 ... County-Level Data County-level data can be found in the counties.csv file. (Raw CSV file here.)

    date,county,state,fips,cases,deaths 2020-01-21,Snohomish,Washington,53061,1,0 ... In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.

    Methodology and Definitions The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.

    It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial level have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.

    When the information is available, we count patients where they are being treated, not necessarily where they live.

    In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.

    For those reasons, our data will in some cases not exactly match with the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their own records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add informati...

  20. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Oct 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Oct 8, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). Common places where deaths occur in the U.S. as of 2016 [Dataset]. https://www.statista.com/statistics/741886/common-locations-of-death-in-the-us/
Organization logo

Common places where deaths occur in the U.S. as of 2016

Explore at:
Dataset updated
Nov 30, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Mar 30, 2016 - May 29, 2016
Area covered
United States
Description

This statistic displays the percentage of adults in the U.S. who had a loved one that passed away in the last five years and the location at which their loved one died. According to the data, 34 percent of survey respondents had a loved one die at home, compared to just 10 percent that had a loved one that died in a nursing home.

Search
Clear search
Close search
Google apps
Main menu