This statistic shows the cities in the United States with the highest number of active Airbnb units as of September 2015. New York had the most active Airbnb units as of September 2015 with 22,876 active units.
This indicator gives an insight of the past population development of a city. It shows hot spots, where annual growth is predominant, as well as cold spots, where population declined in the last 8 years. The values are given in percentage and the visualization shows the difference compared to a neutral population balance (0% growth). Population growth is used as an indicator in urban planning to determine urban areas that are developing, growing and attracting people to move there. Population decline on the other hand is an indicator for urban areas that are losing residential population which can have many different causes, e.g. increased rents, number of crimes or segregation. A decline can also happen in areas where residential lots have been transformed to office or commercial housing units.Data Source:Popular Demographics Points: This feature layer provides Esri 2018 demographic estimates for popular variables including: 2018 Total Population, 2018 Household Population, 2018 Median Age, 2018 Median Household Income, 2018 Per Capita Income, 2018 Diversity Index and many more. Data is available for block group centroids.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population in Largest City: as % of Urban Population data was reported at 7.020 % in 2017. This records a decrease from the previous number of 7.065 % for 2016. United States US: Population in Largest City: as % of Urban Population data is updated yearly, averaging 8.675 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 11.200 % in 1960 and a record low of 7.020 % in 2017. United States US: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Michigan City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Michigan City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Michigan City was 259, a 0.38% decrease year-by-year from 2022. Previously, in 2022, Michigan City population was 260, a decline of 2.26% compared to a population of 266 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Michigan City decreased by 78. In this period, the peak population was 337 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Michigan City Population by Year. You can refer the same here
Prior to the arrival of European explorers in the Americas in 1492, it is estimated that the population of the continent was around sixty million people. Over the next two centuries, most scholars agree that the indigenous population fell to just ten percent of its pre-colonization level, primarily due to the Old World diseases (namely smallpox) brought to the New World by Europeans and African slaves, as well as through violence and famine.
Distribution
It is thought that the most densely populated region of the Americas was in the fertile Mexican valley, home to over one third of the entire continent, including several Mesoamerican civilizations such as the Aztec empire. While the mid-estimate shows a population of over 21 million before European arrival, one estimate suggests that there were just 730,000 people of indigenous descent in Mexico in 1620, just one hundred years after Cortes' arrival. Estimates also suggest that the Andes, home to the Incas, was the second most-populous region in the Americas, while North America (in this case, the region north of the Rio Grande river) may have been the most sparsely populated region. There is some contention as to the size of the pre-Columbian populations in the Caribbean, as the mass genocides, forced relocation, and pandemics that followed in the early stages of Spanish colonization make it difficult to predict these numbers.
Varying estimates Estimating the indigenous populations of the Americas has proven to be a challenge and point of contention for modern historians. Totals from reputable sources range from 8.4 million people to 112.55 million, and while both of these totals were published in the 1930s and 1960s respectively, their continued citation proves the ambiguity surrounding this topic. European settlers' records from the 15th to 17th centuries have also created challenges, due to their unrealistic population predictions and inaccurate methodologies (for example, many early settlers only counted the number of warriors in each civilization). Nonetheless, most modern historians use figures close to those given in the "Middle estimate" shown here, with similar distributions by region.
Population growth drives increasing demand for housing, jobs, food, education, transportation and many services. Population decline is the flip side of that dynamic, creating its own pressures on local business, government, housing and people.This map shows which areas are under significant pressure from population growth or decline. As the population of the U.S. continues to grow, the cities and the suburbs are experiencing changes in their population density. This map shows areas of declining density in brown, and high growth in dark green.Red areas will lose population by 2015, while green areas will grow. Darker green areas will grow more than 1.25% per year. Click on the map for details about an area. Use this map as a backdrop for your organization's locations, services areas, or other subjects. There is also a simple app showing this web map.You candownload the data from this map package.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 crisis has impacted the lives of the entire nation. As city residents faced lockdowns, they turned to their public parks and open space for respite from the confines of city living. Many residents sought solace in natural areas, wishing to hike, bird, and experience the sights and sounds of a forest during this fraught time. To understand the impacts of the COVID-19 crisis on the public use of natural areas and organizations' ability to care for them, we deployed a survey in May of 2020 to known partners in 12 US cities that are leaders in the management and care of urban natural areas. These cities represent a combined population of over 18 million people and collectively manage 284,906 acres of natural area parkland. We found that most organizations (83%) reported an increase in use of natural areas but concurrently 72% reported a decrease in the ability to care for natural areas during the pandemic. All organizations reported canceled public programs, and 94% saw a decrease in volunteer events. As these organizations look to the future, only 17% were confident in their organization having adequate funding in 2021. Cutting budgets to care for urban natural areas could have significant impacts on the health and sustainability of urban life. These 12 cities serve as examples of a pattern that could be occurring nationally and internationally. As cities reopen, budgets and priorities for the future will be determined as will the fate of resources to care for nature in cities.
Monarch butterfly and other pollinators are in trouble. Monarch butterfly habitat— including milkweed host plants and nectar food sources—has declined drastically throughout most of the United States. Observed overwinter population levels have also exhibited a long-term downward trend, suggesting a strong relationship between habitat loss and monarch population declines. Preliminary research results from a U.S. Geological Survey led effort indicate that we need a comprehensive conservation strategy that includes all land types in order to stabilize monarch populations at levels necessary to adequately minimize extinction risk—urban areas will likely play a critical role. A Landscape Conservation Design (LCD) tool for Kansas City.
This dataset contains a listing of incorporated places (cities and towns) and counties within the United States including the GNIS code, FIPS code, name, entity type and primary point (location) for the entity. The types of entities listed in this dataset are based on codes provided by the U.S. Census Bureau, and include the following: C1 - An active incorporated place that does not serve as a county subdivision equivalent; C2 - An active incorporated place legally coextensive with a county subdivision but treated as independent of any county subdivision; C3 - A consolidated city; C4 - An active incorporated place with an alternate official common name; C5 - An active incorporated place that is independent of any county subdivision and serves as a county subdivision equivalent; C6 - An active incorporated place that partially is independent of any county subdivision and serves as a county subdivision equivalent or partially coextensive with a county subdivision but treated as independent of any county subdivision; C7 - An incorporated place that is independent of any county; C8 - The balance of a consolidated city excluding the separately incorporated place(s) within that consolidated government; C9 - An inactive or nonfunctioning incorporated place; H1 - An active county or statistically equivalent entity; H4 - A legally defined inactive or nonfunctioning county or statistically equivalent entity; H5 - A census areas in Alaska, a statistical county equivalent entity; and H6 - A county or statistically equivalent entity that is areally coextensive or governmentally consolidated with an incorporated place, part of an incorporated place, or a consolidated city.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of California City was 13,802, a 9.08% decrease year-by-year from 2022. Previously, in 2022, California City population was 15,180, an increase of 0.92% compared to a population of 15,041 in 2021. Over the last 20 plus years, between 2000 and 2023, population of California City increased by 5,392. In this period, the peak population was 15,180 in the year 2022. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California City Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Arkansas City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Arkansas City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Arkansas City was 349, a 2.79% decrease year-by-year from 2022. Previously, in 2022, Arkansas City population was 359, a decline of 2.45% compared to a population of 368 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Arkansas City decreased by 246. In this period, the peak population was 595 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Arkansas City Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the City Of Creede population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of City Of Creede across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of City Of Creede was 278, a 0.72% increase year-by-year from 2022. Previously, in 2022, City Of Creede population was 276, a decline of 0.36% compared to a population of 277 in 2021. Over the last 20 plus years, between 2000 and 2023, population of City Of Creede decreased by 89. In this period, the peak population was 415 in the year 2007. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for City Of Creede Population by Year. You can refer the same here
This map shows the historical housing unit change in consistent 2010 census tract boundaries from 1940 to 2019. In many cities over that time period—especially in the 1950s and 1960s—federal, state, and local governments demolished thousands of housing units as part of their "urban renewal" programs. These neighborhoods were typically in the older parts of city centers, contained lower income populations, and had higher shares of Black, Hispanic, and immigrant residents than their respective cities. Homes were typically replaced with new interstate highways and thoroughfares, stadiums, civic buildings, parking lots, high rises, rights of way, and other non-residential uses. In a fraction of cases, homes were replaced with public housing. Many of these areas show up as red on this map because they still have not regained the level of housing they had before World War II.Urban renewal is not the only reason for housing loss. Many tracts in places that have been undergoing population decline—especially cities in the North and Midwest and many rural communities—have also lost considerable amounts of housing over this time period.On the other side of things, many suburban and exurban areas—especially in the South and West—have experienced significant population and housing unit growth. These places show up as blue on this map.The data used to make this map comes from the Historical Housing Unit and Urbanization Database 2010, or HHUUD10. To read more on the methodologies used to estimate the housing unit counts, please refer to the methods paper. To download the data in tabular form, please visit the data repository. To download the feature layer used to make this map or read about the attributes, see the feature layer. Please also remember that these data are estimates and are therefore imperfect. They should be treated like all interpolated data: with caution and a healthy dose of skepticism.Citation:Markley, S.N., Holloway, S.R., Hafley, T.J., Hauer, M.E. 2022. Housing unit and urbanization estimates for the continental U.S. in consistent tract boundaries, 1940–2019. Scientific Data 9 (82). https://doi.org/10.1038/s41597-022-01184-x
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data Source: Open Data DC and American Community Survey (ACS) 5-Year Estimates
Why This Matters
Urban green spaces provide an array of health benefits, including protection from extreme heat, reducing stress and anxiety, and offering a place to stay physically active.
Parks can serve as a social gathering space in neighborhoods, offering a location for residents to host events, play sports, and connect with their neighbors. This benefit can be particularly beneficial for elderly individuals as they are more likely to suffer from social isolation.
While the District is considered a national leader in park equity today, this has not always been the case. Until 1954, many DC parks and playgrounds were segregated, either prohibiting their use by Black residents or only allowing them to be used during certain hours.
The District Response
The District consistently ranks well nationally for park equity, receiving a higher Trust for Public Land ParkScore®rating than any other city for four consecutive years (2021-2024). Unlike most cities in the US, District residents have access to a similar amount of park space regardless of their neighborhood’s racial demographics.
The District Department of Transportation’s Urban Forestry Division is on track to reach a goal of tree canopy coverage for 40% of the District, promoting better air quality and cooling our neighborhoods. Residents can also request the planting of a new street tree near them.
The Department of Parks and Recreation and the Department of General Services are modernizing and renovating parks across the District to improve park services, safety, and utilization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Jersey City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Jersey City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Jersey City was 291,657, a 0.65% increase year-by-year from 2022. Previously, in 2022, Jersey City population was 289,772, an increase of 1.64% compared to a population of 285,105 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Jersey City increased by 51,565. In this period, the peak population was 291,949 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Jersey City Population by Year. You can refer the same here
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
Home Owners’ Loan Corporation (HOLC) maps illustrated patterns of segregation in United States cites in the 1930s. As the causes and drivers of demographic and land use segregation vary over years, these maps provide an important spatial lens in determining how patterns of segregation spatially and temporally developed during the course of the past century. Using a high-resolution land-use time series (1937-2018) of Denver Colorado USA, in conjunction with 80 years of U.S. Census data, we found divergent land-use and demographics patterns across HOLC categories were both pre-existent to the establishment of HOLC mapping, and continued to develop over time. Over this period, areas deemed “declining” or “hazardous” had more diverse land use compared “desirable” areas. “Desirable” areas were dominated by one land-use type (single-family residential), while single-family residential diminished in prominence in the “declining/hazardous” areas. This divergence became more established decades after HOLC mapping, with impact to racial metrics and low-income households. We found changes in these demographic patterns also occurred between 2000 and 2019, highlighting how processes like gentrification can develop from both rapid demographic and land-use changes. This study demonstrates how the legacy of urban segregation develops over decades and can simultaneously persist in some neighborhoods while providing openings for fast-paced gentrification in others.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Paper Abstract: The US urban population increased by almost 50 percent between 1980 and 2020, with this growth heavily concentrated in the Sun Belt and at the fringes of metropolitan areas. This paper considers the role of housing supply in shaping the growth of cities and neighborhoods. Housing supply constraints have meant that demand growth has increasingly manifested as price growth rather than as increases in housing units or population in larger and denser metropolitan areas and neighborhoods. New housing is provided at increasingly higher cost in areas that have higher intensity of existing development and more restrictive regulatory environments. Both forces have strengthened over time, making quantity supplied less responsive to growing demand, driving housing price growth in many areas, and pushing housing quantity growth further out into urban fringes. As a result of such pressures on the cost of new construction, the US has recently experienced more rapid price growth and a declining influence of new construction on the housing stock.
This map layer shows the prevalent generations that make up the population of the United States using multiple scales. As of 2018, the most predominant generations in the U.S. are Baby Boomers (born 1946-1964), Millennials (born 1981-1998), and Generation Z (born 1999-2016). Currently, Millennials are the most predominant population in the U.S.A generation represents a group of people who are born around the same time and experience world events and trends during the same stage of life through similar mediums (for example, online, television, print, or radio). Because of this, people born in the same generation are expected to have been exposed to similar values and developmental experiences, which may cause them to exhibit similar traits or behaviors over their lifetimes. Generations provide scientists and government officials the opportunity to measure public attitudes on important issues by people’s current position in life and document those differences across demographic groups and geographic regions. Generational cohorts also give researchers the ability to understand how different developmental experiences, such as technological, political, economic, and social changes, influence people’s opinions and personalities. Studying people in generational groups is significant because an individual’s age is a conventional predictor for understanding cultural and political gaps within the U.S. population.Though there is no exact equation to determine generational cutoff points, it is understood that we designate generational spans based on a 15- to 20-year gap. The only generational period officially designated by the U.S. Census Bureau is based on the surge of births after World War II in 1946 and a significant decline in birth rates after 1964 (Baby Boomers). From that point, generational gaps have been determined by significant political, economic, and social changes that define one’s formative years (for example, Generation Z is considered to be marked by children who were directly affected by the al Qaeda attacks of September 11, 2001).In this map layer, we visualize six active generations in the U.S., each marked by significant changes in American history:The Greatest Generation (born 1901-1924): Tom Brokaw’s 1998 book, The Greatest Generation, coined the term ‘the Greatest Generation” to describe Americans who lived through the Great Depression and later fought in WWII. This generation had significant job and education opportunities as the war ended and the postwar economic booms impacted America.The Silent Generation (born 1925-1945): The title “Silent Generation” originated from a 1951 essay published in Time magazine that proposed the idea that people born during this period were more cautious than their parents. Conflict from the Cold War and the potential for nuclear war led to widespread levels of discomfort and uncertainty throughout the generation.Baby Boomers (born 1946-1964): Baby Boomers were named after a significant increase in births after World War II. During this 20-year span, life was dramatically different for those born at the beginning of the generation than those born at the tail end of the generation. The first 10 years of Baby Boomers (Baby Boomers I) grew up in an era defined by the civil rights movement and the Vietnam War, in which a lot of this generation either fought in or protested against the war. Baby Boomers I tended to have great economic opportunities and were optimistic about the future of America. In contrast, the last 10 years of Baby Boomers (Baby Boomers II) had fewer job opportunities and available housing than their Boomer I counterparts. The effects of the Vietnam War and the Watergate scandal led a lot of second-wave boomers to lose trust in the American government. Generation X (born 1965-1980): The label “Generation X” comes from Douglas Coupland’s 1991 book, Generation X: Tales for An Accelerated Culture. This generation was notoriously exposed to more hands-off parenting, out-of-home childcare, and higher rates of divorce than other generations. As a result, many Gen X parents today are concerned about avoiding broken homes with their own kids.Millennials (born 1981-1998): During the adolescence of Millennials, America underwent a technological revolution with the emergence of the internet. Because of this, Millennials are generally characterized by older generations to be technologically savvy.Generation Z (born 1999-2016): Generation Z or “Zoomers” represent a generation raised on the internet and social media. Gen Z makes up the most ethnically diverse and largest generation in American history. Like Millennials, Gen Z is recognized by older generations to be very familiar with and/or addicted to technology.Questions to ask when you look at this mapDo you notice any trends with the predominant generations located in big cities? Suburbs? Rural areas?Where do you see big clusters of the same generation living in the same area?Which areas do you see the most diversity in generations?Look on the map for where you, your parents, aunts, uncles, and grandparents live. Do they live in areas where their generation is the most predominant?
In 2022, the Detroit metro area GDP amounted to ****** billion U.S. dollars, an increase from the previous year. Detroit's GDP Between 2001 and 2022, the GDP of the Detroit-Warren-Dearborn metro area rose from ****** billion U.S. dollars in 2001 to ****** billion U.S. dollars in 2021, dipping in 2009 to ****** billion U.S. dollars. Despite a rise in GDP, the city of Detroit filed for bankruptcy in July 2013 with debts of approximately ** billion U.S. dollars. Detroit was the largest municipality to file for bankruptcy since 1953. Second largest was Jefferson County, Alabama, which filed in 2011 with debts of approximately *** billion U.S. dollars. In 2021, the Detroit metro area had a population of around 4.36 million inhabitants. City of Detroit Detroit was once a major production hub of the American automobile industry, but has since suffered decline as car manufacturers faced international competition and automobile production was moved out of the city. As a result, workers left Detroit and the population fell. In 2019, Detroit had a resident population of roughly ******* people, ranking **** on the list of largest U.S. cities, but has since fallen off the list of the ** most populous cities in the U.S. Poverty remains a problem for the city and many buildings remain empty and derelict. Crime rates also indicate the extent of Detroit’s decline. Detroit was the second most dangerous city in America in 2022, with ***** crimes per 100,000 residents.
This statistic shows the cities in the United States with the highest number of active Airbnb units as of September 2015. New York had the most active Airbnb units as of September 2015 with 22,876 active units.