Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
As of July 2023, Monaco is the country with the highest population density worldwide, with an estimated population of nearly ****** per square kilometer.
Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population Density: People per Square Km data was reported at 35.608 Person/sq km in 2017. This records an increase from the previous number of 35.355 Person/sq km for 2016. United States US: Population Density: People per Square Km data is updated yearly, averaging 26.948 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 35.608 Person/sq km in 2017 and a record low of 20.056 Person/sq km in 1961. United States US: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context
Presenting data on the most densely populated islands, with a population density surpassing 1,000 individuals per square kilometer. Precision in estimating density for very small islands (less than 1 km2) proves challenging, given uncertainties in both population and landmass measurements. Furthermore, the populations of these islands are frequently transient, with numerous residents also holding residences on larger landmasses and utilizing the island as a seasonal dwelling.
This dataset presents information on the top 10 countries with the highest population density, including variables such as country name, population, land area, and population density.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This map shows four of these densely populated areas are in California. The San Francisco-Oakland and San Jose Urban Areas rank second and third, respectively. That the New York Metropolitan area ranks fifth on this list shows that this density ranking is greatly affected by the nature of the land area designated as urban. Census Urban Areas comprise an urban core and associated suburbs. California's urban and suburban areas are more uniform in density when compared to New York's urban core and suburban periphery which have vastly different densities. Delano ranks fourth because it has a very small land area and its population is augmented by two large California State Prisons housing 10,000 inmates.
As of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 12 countries was 25 people per square km. The highest value was in Ecuador: 72 people per square km and the lowest value was in Guyana: 4 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Step by step instructions to calculating most probable absolute population density and its 95% confidence bounds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 53 countries was 112 people per square km. The highest value was in Mauritius: 634 people per square km and the lowest value was in Namibia: 3 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
The SACS Population Index depicts the 2015 Census – American Community Survey data as population density. This population density is calculated as persons per square mile, per census tract. The census tracts depicted are within the USACE South Atlantic Coastal Study boundaries with an inland extent of NOAA’s Category 5 Maximum of Maximum Storm Surge Hazard Layer. The index ranks all census tracts within the SACS study area on a percentile index by population density. These data are represented on a normalized scale of 0 to 1, with 1 being the most densely populated census tract in the study area, and zero being the least densely populated census tract. The census tract feature dataset is converted to a 30m-by-30m raster grid for aggregation with other SACS datasets.This Tier 1 dataset is available for download here:Tier 1 Risk Assessment Download
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Knowing where people are is crucial for policymakers, particularly for the efficient allocation of resources in their country and the development of effective, people-centred policies. However, rural population distribution maps suffer from biases related to the type of dataset used to predict population density, such as the use of nighttime lights datasets in areas without electricity. This renders widely used datasets irrelevant in rural areas and biases nationwide models towards urban areas. To compensate for such biases, we aim at understanding the importance and relationship between water-related covariates and population densities in a random forest model across the urban-rural gradient. By extending a recursive feature elimination framework, we show that commonly used covariates are only selected when modelling the whole country. However, once the highest density areas are removed, water-related characteristics (especially distance to boreholes) become important covariates of population density outside of densely populated areas. This has important implications for modelling population in rural areas, including for a better estimation of the size of remote communities. When seeking to produce country-level population maps, we encourage further studies to explicitly account for rural areas by considering the urban-rural gradient and encourage the use of water-related datasets.
As of 2023, the top five most densely populated cities in Latin America and the Caribbean were in Colombia. The capital, Bogotá, ranked first with over ****** inhabitants per square kilometer.
The SACS Population Index depicts the 2015 Census – American Community Survey data as population density. This population density is calculated as persons per square mile, per census tract. The census tracts depicted are within the USACE South Atlantic Coastal Study boundaries with an inland extent of NOAA’s Category 5 Maximum of Maximum Storm Surge Hazard Layer. The index ranks all census tracts within the SACS study area on a percentile index by population density. These data are represented on a normalized scale of 0 to 1, with 1 being the most densely populated census tract in the study area, and zero being the least densely populated census tract. The census tract feature dataset is converted to a 30m-by-30m raster grid for aggregation with other SACS datasets.This Tier 1 dataset is available for download here:Tier 1 Risk Assessment Download
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 27 countries was 187 people per square km. The highest value was in Malta: 1620 people per square km and the lowest value was in Finland: 18 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Netherlands NL: Population Density: People per Square Km data was reported at 508.544 Person/sq km in 2017. This records an increase from the previous number of 505.501 Person/sq km for 2016. Netherlands NL: Population Density: People per Square Km data is updated yearly, averaging 439.837 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 508.544 Person/sq km in 2017 and a record low of 344.749 Person/sq km in 1961. Netherlands NL: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Netherlands – Table NL.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;
As of 2024, Barbados was the most densely populated country in Latin America and the Caribbean, with approximately 652 people per square kilometer. In that same year, Argentina's population density was estimated at approximately 16.7 people per square kilometer.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.