Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.
As of 2025, Tokyo-Yokohama in Japan was the largest world urban agglomeration, with 37 million people living there. Delhi ranked second with more than 34 million, with Shanghai in third with more than 30 million inhabitants.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
In 2025, approximately 23 million people lived in the São Paulo metropolitan area, making it the biggest in Latin America and the Caribbean and the sixth most populated in the world. The homonymous state of São Paulo was also the most populous federal entity in the country. The second place for the region was Mexico City with 22.75 million inhabitants. Brazil's cities Brazil is home to two large metropolises, only counting the population within the city limits, São Paulo had approximately 11.45 million inhabitants, and Rio de Janeiro around 6.21 million inhabitants. It also contains a number of smaller, but well known cities such as Brasília, Salvador, Belo Horizonte and many others, which report between 2 and 3 million inhabitants each. As a result, the country's population is primarily urban, with nearly 88 percent of inhabitants living in cities. Mexico City Mexico City's metropolitan area ranks sevenths in the ranking of most populated cities in the world. Founded over the Aztec city of Tenochtitlan in 1521 after the Spanish conquest as the capital of the Viceroyalty of New Spain, the city still stands as one of the most important in Latin America. Nevertheless, the preeminent economic, political, and cultural position of Mexico City has not prevented the metropolis from suffering the problems affecting the rest of the country, namely, inequality and violence. Only in 2023, the city registered a crime incidence of 52,723 reported cases for every 100,000 inhabitants and around 24 percent of the population lived under the poverty line.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the last century, the global population has increased by billions of people. And it is still growing. Job opportunities in large cities have caused an influx of people to these already packed locations. This has resulted in an increase in population density for these cities, which are now forced to expand in order to accommodate the growing population. Population density is the average number of people per unit, usually miles or kilometers, of land area. Understanding and mapping population density is important. Experts can use this information to inform decisions around resource allocation, natural disaster relief, and new infrastructure projects. Infectious disease scientists use these maps to understand the spread of infectious disease, a topic that has become critical after the COVID-19 global pandemic.While a useful tool for decision and policymakers, it is important to understand the limitations of population density. Population density is most effective in small scale places—cities or neighborhoods—where people are evenly distributed. Whereas at a larger scale, such as the state, region, or province level, population density could vary widely as it includes a mix of urban, suburban, and rural places. All of these areas have a vastly different population density, but they are averaged together. This means urban areas could appear to have fewer people than they really do, while rural areas would seem to have more. Use this map to explore the estimated global population density (people per square kilometer) in 2020. Where do people tend to live? Why might they choose those places? Do you live in a place with a high population density or a low one?
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Population of Urban Agglomerations with 300,000 Inhabitants or more in 2014, by city, 1950-2030 (thousands). Data for 1,692 cities contained in the Excel file.
Note: Each country has its own definition of what is 'urban' and therefore use exercise caution when comparing cities in different countries.
Data available from the United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition.
Further detail of population estimates, land area, and population density for world urban areas with over 500,000 people (924 areas) is available with Demographia's World Urban Areas report (2014). Much of this data is based on the UN urban agglomerations, though a range of other sources are also used.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A population is a subgroup of individuals within the same species that are living and breeding within a geographic area. The number of individuals living within that specific location determines the population density, or the number of individuals divided by the size of the area.Population density can be used to describe the location, growth, and migration of many organisms. In the case of humans, population density is often discussed in relation to urbanization, immigration, and population demographics.Globally, statistics related to population density are tracked by the United Nations Statistics Division, and the United States Constitution requires population data to be collected every 10 years, an operation carried out by the U.S. Census Bureau. However, data on human population density at the country level, and even at regional levels, may not be very informative; society tends to form clusters that can be surrounded by sparsely inhabited areas. Therefore, the most useful data describes smaller, more discrete population centers.Dense population clusters generally coincide with geographical locations often referred to as city, or as an urban or metropolitan area; sparsely populated areas are often referred to as rural. These terms do not have globally agreed upon definitions, but they are useful in general discussions about population density and geographic location.Population density data can be important for many related studies, including studies of ecosystems and improvements to human health and infrastructure. For example, the World Health Organization, the U.S. Energy Information Administration, the U.S. Global Change Research Program, and the U.S. Departments of Energy and Agriculture all use population data from the U.S. Census or UN statistics to understand and better predict resource use and health trends.Key areas of study include the following:Ecology: how increasing population density in certain areas impacts biodiversity and use of natural resources.Epidemiology: how densely populated areas differ with respect to incidence, prevalence, and transmission of infectious disease.Infrastructure: how population density drives specific requirements for energy use and the transport of goods.This list is not inclusive—the way society structures its living spaces affects many other fields of study as well. Scientists have even studied how happiness correlates with population density. A substantial area of study, however, focuses on demographics of populations as they relate to density. Areas of demographic breakdown and study include, but are not limited to:age (including tracking of elderly population centers);sex (biological classification as male or female); andrace and ethnic group, or cultural characteristics (ethnic origin and language use).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as a contiguous area with 1,500 or more inhabitants per square kilometre or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants.This dataset is described in "Mapping inequality in accessibility: a global assessment of travel time to cities in 2015" (Weiss et al 2018; doi:10.1038/nature25181)This map was produced through a collaboration between MAP (University of Oxford), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands.The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a "friction surface"; a map where every pixel is allocated a nominal overall speed of travelbased on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) wereused in conjunction with this friction surface to calculate the time of travel from all locations to the nearest (in time) city. The cities dataset used is the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modelled shortest time from that location to a city.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population in Largest City: as % of Urban Population data was reported at 7.020 % in 2017. This records a decrease from the previous number of 7.065 % for 2016. United States US: Population in Largest City: as % of Urban Population data is updated yearly, averaging 8.675 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 11.200 % in 1960 and a record low of 7.020 % in 2017. United States US: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
This map features the World Population Density Estimate 2016 layer for the Caribbean region. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
With 3.5 persons per square kilometre, Canada is one of the countries with the lowest population densities in the world. Census metropolitan areas (CMAs) with the highest population densities—Toronto (866), Montréal (854), Vancouver (735), Kitchener (546), Hamilton (505), and Victoria (475)—were located close to United States border.
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.
Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.
How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?
Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Understanding scaling relations of social and environmental attributes of urban systems is necessary for effectively managing cities. Urban scaling theory (UST) has assumed that population density scales positively with city size. We present a new global analysis using a publicly available database of 933 cities from 38 countries. Our results showed that (18/38) 47% of countries analyzed supported increasing density scaling (pop ~ area) with exponents ~⅚ as UST predicts. In contrast, 17 of 38 countries (~45%) exhibited density scalings statistically indistinguishable from constant population densities across cities of varying sizes. These results were generally consistent in years spanning four decades from 1975 to 2015. Importantly, density varies by an order of magnitude between regions and countries and decreases in more developed economies. Our results (i) point to how economic and regional differences may affect the scaling of density with city size and (ii) show how understanding country- and region-specific strategies could inform effective management of urban systems for biodiversity, public health, conservation and resiliency from local to global scales.200 word statement of contribution: Urban Scaling Theory (UST) is a general scaling framework that makes quantitative predictions for how many urban attributes spanning physical, biological and social dimensions scale with city size; thus, UST has great implications in guiding future city developments. A major assumption of UST is that larger cities become denser. We evaluated this assumption using a publicly available global dataset of 933 cities in 38 countries. Our scaling analysis of population size and area of cities revealed that while many countries analyzed showed increasing densities with city size, about 45% of countries showed constant densities across cities. These results question a key assumption of UST. Our results suggest policies and management strategies for biodiversity conservation, public health and sustainability of urban systems may need to be tailored to national and regional scaling relations to be effective.
The Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid estimates population per square km for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic Units, is used to assign population values to grid cells. The population count grids are divided by the land area grid to produce population density grids. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Green spaces in urban areas-- like remnant habitat, parks, constructed wetlands, and street trees-- supply multiple benefits. Many studies show green spaces in and near urban areas play important roles harboring biodiversity and promoting human well-being. On the other hand, evidence suggests that greater human population density enables compact, low-carbon cities that spare habitat conversion at the fringes of expanding urban areas, while also allowing more walkable and livable cities. How then can urban areas have abundant green spaces as well as density?
This data archive contains data created as part of a scientific manuscript that attempts to answer this question, entitled "Denser and greener cities: Green interventions to achieve both urban density and nature". Please see that manuscript for details on sources of data and details of methodology.
We found that there is a negative correlation between population density and urban green spaces. For Functional Urban Areas in the OECD, a doubling of density is associated with a 2.9% decline in tree cover. We argue that there are competing tradeoffs between the benefits of density for sustainability and the benefits of nature for human well-being. Planners must decide an appropriate density by choosing where to be on this tradeoff curve, taking into account city-specific urban planning goals and context. However, while the negative correlation between population density and tree cover is modest at the level of US urbanized areas (R2=0.22), it is weak at the US Census block level (R2=0.05), showing that there are significant brightspots, neighborhoods that manage to have more tree canopy than would be expected based upon their level of density. We then describe techniques for how urban planners and designers can create more brightspots, identifying a typology of urban forms and listing green interventions appropriate for each form. We also analyze policies that enable these green interventions illustrating them with the case studies of Curitiba and Singapore. We conclude that while there are tensions between density and urban green spaces, an urban world that is both green and dense is possible, if society chooses to take advantage of the available green interventions and create it.
Methods
Please see the Methods section in McDonald et al. (People and Nature) for details on our methods.
Our product delivers insights into foot traffic and spend patterns across key urban areas globally, utilising H3 hexbins at Level 12 resolution. By leveraging our advanced location signals technology, which captures real-time, anonymised movement data, we provide a comprehensive understanding of how people interact with urban spaces. With a client base of over 600 satisfied customers, our data stands as a trusted resource for making informed decisions in urban development and planning on a global scale.
Key Features and Specifications
Valued by 600+ Customers: Our data is trusted by a substantial client base, proving its reliability and utility across various urban planning needs around the world.
Global Coverage: Comprehensive geographic insights spanning major urban centres across the globe, crucial for regional, national, and international urban planning initiatives.
High-Resolution Data: Hex 12 (19m) resolution offers detailed and precise geographic information, essential for accurate urban planning and development projects in diverse environments.
Location Signals: Our data is enriched with precise location signals, providing real-time insights into human movement and behaviour within urban areas. This advanced technology allows planners to understand foot traffic in unparalleled detail, essential for strategic planning.
Daypart Footfall Analysis: Our data enables planners to understand foot traffic patterns across different times of the day. By analysing day-part footfall, urban planners can optimise the use of public spaces, transportation systems, and commercial areas, tailoring strategies to the specific needs of each part of the day.
Catchment Area Analysis: Understand the reach and influence of different urban locations with our catchment area analysis. This feature helps planners and policymakers determine how far people are willing to travel to access certain services or amenities, essential for infrastructure development and resource allocation.
Density Maps: Visualise population density and movement patterns with our detailed density maps. These maps provide critical insights into where people congregate within urban spaces, helping planners make informed decisions about zoning, public space design, and resource distribution.
Demographic Insights: Our data includes demographic breakdowns, allowing planners to understand who is using urban spaces. By analyzing demographics, planners can tailor urban development strategies to meet the needs of different population groups, ensuring inclusivity and accessibility in urban design.
Spend Insights: Gain a deeper understanding of economic activity within urban areas through our spend insights. This data provides detailed information on consumer spending patterns, enabling planners to assess the economic health of different areas and make informed decisions about commercial development and investment opportunities.
Accuracy and Validation: Our data's accuracy is rigorously backtested and verified, showing high correlation with benchmarks across various global regions.
Unique Visitor Footfall: Provides clear insights into the number of unique visitors, vital for understanding public space usage and transportation needs across different cities and countries.
Daily Footfall Statistics: Updated daily to ensure the most current and actionable insights, supporting real-time urban management and planning in rapidly changing environments.
Why Choose Huq Industries' Footfall Data for Urban Planning?
Urban Development
For urban planners, our global footfall data, powered by location signals, is a critical tool for understanding how people interact with urban spaces across different regions of the world. By analyzing foot traffic patterns, including daypart footfall, planners can make informed decisions about infrastructure development, public transportation, and the allocation of resources, regardless of location. The granularity and frequency of our data enable detailed analysis, essential for designing cities that meet the needs of their diverse populations.
Public Space Management
Our data, enhanced by location signals and density maps, offers invaluable insights into the usage of public spaces, allowing planners to manage and improve urban areas effectively, whether in bustling metropolises or smaller cities. By tracking visitor numbers, demographics, and movement patterns globally, planners can optimize the design and functionality of parks, squares, and other public spaces to enhance community well-being and accessibility.
Transportation Planning
Transportation planners benefit from our data by leveraging it for comprehensive transportation network analysis worldwide. The integration of location signals and daypart footfall analysis provides real-time insights into pedestrian movement across different regions, enabling accurate forecasting of transportation needs and the development of efficien...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
A better understanding of urban form metrics and their environmental outcomes can help urban policymakers determine which policies will lead to more sustainable growth. In this study, we have examined five urban form metrics – weighted density, density gradient slope, density gradient intercept, compactness, and street connectivity – for 462 metropolitan areas worldwide. We compared urban form metrics and examined their correlations with each other across geographic regions and socioeconomic characteristics such as income. Using the K-Means clustering algorithm, we then developed a typology of urban forms worldwide. Furthermore, we assessed the associations between urban form metrics and two important environmental outcomes: green space access and air pollution. Our results demonstrate that while higher density is often emphasized as the way to reduce driving and thus PM2.5 emissions, it comes with a downside – less green space access and more exposure to PM2.5. Moreover, street connect..., The dataset includes the raw data required to calculate the urban form metrics used in the article including weighted density, street connectivity, density gradient slope, density gradient intercept, and compactness. We merged it with the GHSL statistics data (open-source data available here) for the analysis. The street connectivity metric was calculated using the approach proposed by Barrington-Leigh and Millard-Ball (2020). The metric was calculated based on OpenStreetMap. Other metrics were calculated using the expressions and methods explained in the paper. The data source for the process was the Global Human Settlement Layer (GHSL) 2015. Please see the README document for more information. , The data is in the .csv format which can be opened and read with Google Sheets, Microsoft Excel, R, Python, and several other programs.
Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.