52 datasets found
  1. Cities with the highest population density globally 2023

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest population density globally 2023 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.

  2. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  3. Highest population density by country 2024

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  4. Population density of the United States 2019

    • statista.com
    Updated Dec 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density of the United States 2019 [Dataset]. https://www.statista.com/statistics/183475/united-states-population-density/
    Explore at:
    Dataset updated
    Dec 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This graph shows the population density of the United States of America from 1790 to 2019. In 2019, the population density was approximately 92.9 residents per square mile of land area. Population density in the United States Population density has been tracked for over two hundred years in the United States. Over the last two centuries, the number of people living in the United States per square mile has grown from 4.5 in 1790 to 87.4 in 2010. After examining the data in detail, it becomes clear that a major population increase started around 1870. Population density was roughly 11 at the time and has doubled in the last century. Since then, population density grew by about 16 percent each decade. Population density doubled in 1900, and grew in total by around 800 percent until 2010.

    The population density of the United States varies from state to state. The most densely populated state is New Jersey, with 1,208 people per square mile living there. Rhode Island is the second most densely populated state, with slightly over 1,000 inhabitants per square mile. A number of New England states follow at the top of the ranking, making the northeastern region of the United States the most densely populated region of the country.

    The least populated U.S. state is the vast territory of Alaska. Only 1.3 inhabitants per square mile reside in the largest state of the U.S.

    Compared to other countries around the world, the United States does not rank within the top 50, in terms of population density. Most of the leading countries and territories are city states. However, the U.S. is one of the most populous countries in the world, with a total population of over 327 million inhabitants, as of 2018.

  5. U

    United States US: Population Density: People per Square Km

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Population Density: People per Square Km data was reported at 35.608 Person/sq km in 2017. This records an increase from the previous number of 35.355 Person/sq km for 2016. United States US: Population Density: People per Square Km data is updated yearly, averaging 26.948 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 35.608 Person/sq km in 2017 and a record low of 20.056 Person/sq km in 1961. United States US: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  6. Projected population density of most densely populated countries 2023-2050

    • statista.com
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Projected population density of most densely populated countries 2023-2050 [Dataset]. https://www.statista.com/statistics/912425/global-population-density-by-select-country/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    As of July 2023, Monaco is the country with the highest population density worldwide, with an estimated population of nearly ****** per square kilometer.

  7. Covid-19 Highest City Population Density

    • kaggle.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    Kaggle
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  8. Urban and Regional Migration Estimates

    • openicpsr.org
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephan Whitaker (2024). Urban and Regional Migration Estimates [Dataset]. http://doi.org/10.3886/E201260V2
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Authors
    Stephan Whitaker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2010 - Jun 30, 2024
    Area covered
    United States, Combined Statistical Areas, Metropolitan areas, Metro areas
    Description

    Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su

  9. Global population density by region 2025

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global population density by region 2025 [Dataset]. https://www.statista.com/statistics/912416/global-population-density-by-region/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    As of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.

  10. U

    United Kingdom UK: Population Density: People per Square Km

    • ceicdata.com
    Updated Nov 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). United Kingdom UK: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/united-kingdom/population-and-urbanization-statistics/uk-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Nov 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United Kingdom
    Variables measured
    Population
    Description

    United Kingdom UK: Population Density: People per Square Km data was reported at 272.898 Person/sq km in 2017. This records an increase from the previous number of 271.134 Person/sq km for 2016. United Kingdom UK: Population Density: People per Square Km data is updated yearly, averaging 235.922 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 272.898 Person/sq km in 2017 and a record low of 218.245 Person/sq km in 1961. United Kingdom UK: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;

  11. A

    Australia AU: Population Density: People per Square Km

    • ceicdata.com
    Updated May 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Australia AU: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/australia/population-and-urbanization-statistics/au-population-density-people-per-square-km
    Explore at:
    Dataset updated
    May 7, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Australia
    Variables measured
    Population
    Description

    Australia Population Density: People per Square Km data was reported at 3.382 Person/sq km in 2022. This records an increase from the previous number of 3.339 Person/sq km for 2021. Australia Population Density: People per Square Km data is updated yearly, averaging 2.263 Person/sq km from Dec 1961 (Median) to 2022, with 62 observations. The data reached an all-time high of 3.382 Person/sq km in 2022 and a record low of 1.365 Person/sq km in 1961. Australia Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Australia – Table AU.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.;Food and Agriculture Organization and World Bank population estimates.;Weighted average;

  12. w

    Global City Population Estimates

    • data.wu.ac.at
    xls, xlsx
    Updated Sep 26, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    London Datastore Archive (2015). Global City Population Estimates [Dataset]. https://data.wu.ac.at/schema/datahub_io/MDI3MzE3NDMtMjcyNy00YjY5LTlhNDMtNWQ2OWFkMmI4YTBh
    Explore at:
    xlsx(19613.0), xls(1039360.0)Available download formats
    Dataset updated
    Sep 26, 2015
    Dataset provided by
    London Datastore Archive
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Population of Urban Agglomerations with 300,000 Inhabitants or more in 2014, by city, 1950-2030 (thousands). Data for 1,692 cities contained in the Excel file.

    Note: Each country has its own definition of what is 'urban' and therefore use exercise caution when comparing cities in different countries.

    Data available from the United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition.

    Further detail of population estimates, land area, and population density for world urban areas with over 500,000 people (924 areas) is available with Demographia's World Urban Areas report (2014). Much of this data is based on the UN urban agglomerations, though a range of other sources are also used.

  13. GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version...

    • zenodo.org
    tiff
    Updated Sep 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-alpha) [Dataset]. http://doi.org/10.5281/zenodo.11071249
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Usage Notice

    This version is not recommended for download. Please check the newest version.

    We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

    Thank you for your continued support of the GlobPOP.

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  14. g

    ESRI, China's Population Density by Administrative Regions, China, 2006

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). ESRI, China's Population Density by Administrative Regions, China, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    ESRI
    data
    Description

    The computed population density data for the map is based on a media CD released by ESRI in 2006. According to the media CD, China in 2006 comprised of 33 provinces. These include Tibet (now named Xizang, an autonomously administered region), Hong Kong and Macau (both of which are designated as special districts) along with Xingiang in the west, parts of which are involved in an unsettled border dispute with a neighboring country, as can be seen by a dotted line in google base map of the region and Taiwan. Compare this map with the population density map of 2002 that now has only 32 provinces...

  15. Population density in China 2012-2022

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population density in China 2012-2022 [Dataset]. https://www.statista.com/statistics/270130/population-density-in-china/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    In 2022, the estimated population density of China was around 150.42 people per square kilometer. That year, China's population size declined for the first time in decades. Although China is the most populous country in the world, its overall population density is not much higher than the average population density in Asia. Uneven population distribution China is one of the largest countries in terms of land area, and its population density figures vary dramatically from region to region. Overall, the coastal regions in the East and Southeast have the highest population densities, as they belong to the more economically developed regions of the country. These coastal regions also have a higher urbanization rate. On the contrary, the regions in the West are covered with mountain landscapes which are not suitable for the development of big cities. Populous cities in China Several Chinese cities rank among the most populous cities in the world. According to estimates, Beijing and Shanghai will rank among the top ten megacities in the world by 2030. Both cities are also the largest Chinese cities in terms of land area. The previous colonial regions, Macao and Hong Kong, are two of the most densely populated cities in the world.

  16. f

    Table_2_Global city densities: Re-examining urban scaling theory.docx

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    • +1more
    docx
    Updated Jun 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph R. Burger; Jordan G. Okie; Ian A. Hatton; Vanessa P. Weinberger; Munik Shrestha; Kyra J. Liedtke; Tam Be; Austin R. Cruz; Xiao Feng; César Hinojo-Hinojo; Abu S. M. G. Kibria; Kacey C. Ernst; Brian J. Enquist (2023). Table_2_Global city densities: Re-examining urban scaling theory.docx [Dataset]. http://doi.org/10.3389/fcosc.2022.879934.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    Frontiers
    Authors
    Joseph R. Burger; Jordan G. Okie; Ian A. Hatton; Vanessa P. Weinberger; Munik Shrestha; Kyra J. Liedtke; Tam Be; Austin R. Cruz; Xiao Feng; César Hinojo-Hinojo; Abu S. M. G. Kibria; Kacey C. Ernst; Brian J. Enquist
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Understanding scaling relations of social and environmental attributes of urban systems is necessary for effectively managing cities. Urban scaling theory (UST) has assumed that population density scales positively with city size. We present a new global analysis using a publicly available database of 933 cities from 38 countries. Our results showed that (18/38) 47% of countries analyzed supported increasing density scaling (pop ~ area) with exponents ~⅚ as UST predicts. In contrast, 17 of 38 countries (~45%) exhibited density scalings statistically indistinguishable from constant population densities across cities of varying sizes. These results were generally consistent in years spanning four decades from 1975 to 2015. Importantly, density varies by an order of magnitude between regions and countries and decreases in more developed economies. Our results (i) point to how economic and regional differences may affect the scaling of density with city size and (ii) show how understanding country- and region-specific strategies could inform effective management of urban systems for biodiversity, public health, conservation and resiliency from local to global scales.200 word statement of contribution: Urban Scaling Theory (UST) is a general scaling framework that makes quantitative predictions for how many urban attributes spanning physical, biological and social dimensions scale with city size; thus, UST has great implications in guiding future city developments. A major assumption of UST is that larger cities become denser. We evaluated this assumption using a publicly available global dataset of 933 cities in 38 countries. Our scaling analysis of population size and area of cities revealed that while many countries analyzed showed increasing densities with city size, about 45% of countries showed constant densities across cities. These results question a key assumption of UST. Our results suggest policies and management strategies for biodiversity conservation, public health and sustainability of urban systems may need to be tailored to national and regional scaling relations to be effective.

  17. Data from: Urban-rural continuum

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy (2023). Urban-rural continuum [Dataset]. http://doi.org/10.6084/m9.figshare.12579572.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx

  18. g

    BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007

    • geocommons.com
    Updated May 19, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 19, 2008
    Dataset provided by
    data
    Bureau of Transportation Statistics National Transportation Atlas Database
    Description

    The United States MSA Boundaries data set contains the boundaries for metropolitan statistical areas in the United States. The data set contains information on location, identification, and size. The database includes metropolitan boundaries within all 50 states, the District of Columbia, and Puerto Rico. The general concept of a metropolitan area (MA) is one of a large population nucleus, together with adjacent communities that have a high degree of economic and social integration with that nucleus. Some MAs are defined around two or more nuclei. Each MA must contain either a place with a minimum population of 50,000 or a U.S. Census Bureau-defined urbanized area and a total MA population of at least 100,000 (75,000 in New England). An MA contains one or more central counties. An MA also may include one or more outlying counties that have close economic and social relationships with the central county. An outlying county must have a specified level of commuting to the central counties and also must meet certain standards regarding metropolitan character, such as population density, urban population, and population growth. In New England, MAs consist of groupings of cities and towns rather than whole counties. The territory, population, and housing units in MAs are referred to as "metropolitan." The metropolitan category is subdivided into "inside central city" and "outside central city." The territory, population, and housing units located outside territory designated "metropolitan" are referred to as "non-metropolitan." The metropolitan and non-metropolitan classification cuts across the other hierarchies; for example, generally there are both urban and rural territory within both metropolitan and non-metropolitan areas.

  19. Z

    Hrycyna et al. 2022 - Satellite observations of NO2 indicate legacy impacts...

    • data.niaid.nih.gov
    Updated May 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Noor, Saiido (2022). Hrycyna et al. 2022 - Satellite observations of NO2 indicate legacy impacts of Redlining in US Midwestern cities [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_6536070
    Explore at:
    Dataset updated
    May 11, 2022
    Dataset provided by
    Noor, Saiido
    Mergenthal, Jennings
    Heskel, Mary
    Hrycyna, Elizabeth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Midwestern United States, United States
    Description

    This dataset contains remotely sensed estimates of nitrogen dioxide (NO2, via TROPOMI accessed via Google Earth Engine) for HOLC neighborhoods in 11 US Midwestern cities, and corresponding coarse geographic and demographic data of those cities. NO2 data is reported daily for the entire calendar year of 2019, geographic and demographic variables are fixed for each city for the entire year. Each HOLC-graded neighborhood included in this dataset was filtered to be greater than 2 km2. The number of pixels used to calculate the area-weighted mean of NO2 is also reported, as is the area of the neighborhood. The dataset has also been filtered for observations that did not pass quality filters for L3 TROPOMI data. The cities included in the study are: Chicago IL, Milwaukee WI, Saint Paul MN, Minneapolis MN, Indianapolis IN, Cleveland OH, Wichita KS, Greater Kansas City KS and MO, Columbus OH, Detroit MI, and Omaha NE. HOLC neighborhood shapefiles were obtained from the Mapping Inequality project website, hosted by the University of Richmond, and resulting polygons used in analysis were created by dissolving shared boundaries in Google Earth Engine. City populations and population density were obtained from the US 2010 Census data. All data was collected and organized to assess if current day NO2 levels varied with HOLC grades in these major cities.

    Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. https://dsl.richmond.edu/panorama/redlining/#loc=5/39.1/-94.58&text=downloads

    Dataset for all analyses presented in Hrycyna et al. Columns described below:

    HOLC_grade: A, B, C, D (neighborhood grade categories obtained from Mapping Inequality project, indicate historic HOLC designations of neighborhoods).

    HOLCAreaKm2: continuous area value in km2 of the HOLC neighborhood polygon, which may be more than one HOLC designated polygon merged from the shapefiles downloaded from Mapping Inequality.

    pixelcount: integer values of the number of TROPOMI NO2 pixels used to produce the area-weighted mean NO2 value.

    NO2_mol_m2: area-weighted mean value of TROPOMI NO2 for that HOLC neighborhood polygon in mol m-2

    system.index: designated date and time boundary of the observation collected via TROPOMI

    date: date of observation

    month: month of observation

    City: city in the US Midwest

    State: state for the city of focus

    Population: urban population obtained from 2010 census

    PopDensity: urban population density obtained from 2010 census, based on modern city boundaries (in people per square miles)

    CityArea_mi2: Area of the city of interest, in square miles.

    ln_NO2: natural log transformed NO2 values in mol m-2

    NO2_DU: NO2 value converted from mol m-2 to DU (Dobsons Units, converted by multiplying 2241.15)

    NO2_lnDU: natural log transformed NO2 values in DU

    Comment: We have submitted the manuscript to Elementa, where it is currently undergoing revisions. We will update references when the final DOI of the manuscript is available.

  20. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cities with the highest population density globally 2023 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
Organization logo

Cities with the highest population density globally 2023

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
Worldwide
Description

Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.

Search
Clear search
Close search
Google apps
Main menu